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1. INTRODUCTION

This document is a preliminary report on a survey of the

factors affecting the performance of a filter. Although specifi-

cally directed at optical filters, most of the discussion is

quite general, applying to the propagation of any wave in a

medium with a spatially modulated response or susceptance. The

intent of this work is to examine the factors affecting filter

performance with a view toward perfecting filter design. This

effort began with a survey of the optical properties of materials

which could be used in a filter. The assumption was that ulti-

mate filter performance is primarily limited by materials

questions. During this survey the author quickly became aware of

the need to develop a rating system for material properties,

based on the relationships between filter performance and the

susceptance of the various parts of the filter. Thus it became

necessary to first establish this relationship, a task which

forms the main body of this work.

1.1 Design Needs

The filter design engineer is severely hampered if he does

not have the freedom to specify the susceptance (this implies the

refractive index) of the medium at a given location. A

dielectric can be tailored to an arbitrary specification between

the limiting value of the dielectric constants of a given set of

materials by making an appropriate solution of these materials.

Unfortunately there is no ready formula for the ideal solution 4.

(this question is addressed in Paragraph 2.1) and no solution

will be perfectly homogeneous. The impact of this fact on wave

propagation is discussed in Paragraph 2.2.

2 .'-
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Bragg filters are based on the interference effects upon

wave propagation due to spatial variations in the susceptance of

the medium. Traditional optical filters have modulated the

refractive index profile in discrete, discontinuous steps. The

index response between these steps is flat. This method achieves

* great simplicity in both manufacture and design. The motivation

for this work is the production of a new type of filter--the

graded index filter. We define a graded index filter as one in

which the medium susceptance (and therefore the dielectric

constant) is smoothly and continuously varying, i.e., one in

which there are no sharp discontinuities or flat regions in the

susceptance. Currently a sinusoidal modulation is popular in

design.

Much of the impetus for the development of graded index

filters is based upon the speculation that the freedom to con-

tour the index profile at will should allow the design engineer

extra flexibility in the design of filters with ultra narrow

stop, or reflectance bands, the location of several such bands at

arbitrary frequencies, and the avoidance of absorption and/or

scattering associated with material discontinuities. The author

has uncovered nothing in this study to support these beliefs. On

the contrary, the analysis presented here suggests that details

of the modulation profile have little bearing on filter perfor-

mance in the frequency range for which most simple filters are

designed.

Wave propagation in a periodic medium is governed primarily

by fundamental considerations without regard to the details of

the system in question (some of these fundamental features are

discussed in the Appendix). Consequently, a wide range of

systems which are usually treated as unique share important

features with optical filters. Examples are acoustic filters

(mufflers), electronic energy bands in solids, lattice dynamics,

2
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transmission line theory, and waveguide theory. Insight to the

optical filter problem can be gained by reviewing the large body

of work developed in these other related areas. In particular,

it is universally found that a periodic modulation of the medium

response will produce not just a single stop, or reflectance

band, but a series of such bands with increasing frequency. In

solid-state band theory, these stop bands are referred to as band

gaps. The higher order band structure is related to the details

of the modulation profile. In the event a filter is designed for

9 multi-octave frequency range, the details of the index contour

will become important.

1.2 Approach

The analysis adopted in the following review of filter per-

formance is analytic. The philosophy is that an analytic (in

contrast to a numerical) approach has advantages for conferring
insight on the essential physical parameters that determine

filter performance. In the process of pursuing this approach a

second goal developed: the application of analysis to optical

filter design, especially the design of continuous gradient

filters. A general procedure for designing a filter is given in

Figure 1.1, which is taken from a reference on the design of

filters in transmission lines. 1 This report begins to lay the

groundwork for development of an optimum transfer function and a

determination of appropriate values for the filter parameters.

The author believes that this analysis will answer questions on

the effect of discontinuities and of continuously varying suscep-

tibilities on filter performance, and the degree to which an

ideal notch filter can be approximated.

An analytic approach has special advantages when a problem

becomes complex. An example is the extension of simple, one-

dimensional filters with purely real refraction indices to three-

3
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Figure 1. Approach to filter design used in transmission line
theory.

4
wit~~° .'i.-liili o"1



7 -IFFT.- - - - -. . - - 7--.7. TV-YT NVY .- w-- -2m K--7

dimensional filters with complex susceptibilities. This problem

can be handled analytically by a resolvant, or Green's function

approach. The Green's function method is a generalization of the

concepts addressed in this report.

Section 3 presents an overview of filters, of different

means of describing their performance, and of the diverse sub-

jects which share essential features. The critical conclusion of

Section 3 is that a complete description of the performance of a

filter may be obtained once the wave equation is solved over the

fundamental repeat region (unit cell) of the filter cascade. IP
The solution of the wave equation is then discussed in Section 4,

with special emphasis on the two cases of special interest, step

function and sinusoidal modulation. These two cases are com-

pared, and some general observations are made about the behavior

of the solutions, particularly the appearance of stop and pass

bands.

Sections 5 and 6 discuss various means by which the solution

of the wave equation may be converted to an algebraic problem.

Algebraic procedures are especially useful in describing multiple

periodic filters, as well as terminations, junctions, and other

local departures from the periodic profile. They are a prime

analytic tool. The mathematical basis for Section 5 is given in

Appendix A.

Several candidates for optical filter materials are

discussed in Section 7, largely in terms of crystal structure and

lattice parameters, since these must be well matched to obtain a

minimal-defect solution. We call attention to the as-yet-little-

studied layered materials, in particular the transition metal

chalcogenides. Our conclusions and suggestions for future work

are given in Section 8. Although this report is largely the

result of an extensive literature review, every section contains

significant original contributions by the author.

5
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2. PRELIMINARY CONSIDERATIONS ON DIELECTRIC BEHAVIOR

The following three sections will give a mathematical

description of light propagation in an ideal medium. In this ILI

section we comment on formulas appearing in the literature for

tailor-made dielectrics and on the effect of a material's imper-

fections on its ideal behavior.

2.1 Dielectric Constant of a Mixture

Before we examine how departures from an ideal profile will

affect the response of an inhomogeneous medium, we should first

obtain some insight into the dielectric behavior of a solution.

To our knowledge, this matter has not been adequately explored.
-. -. A

The dielectric constant of a material is a macroscopic property

with a nonlinear dependence on the molecular (microscopic)

polarizability. The reason for this nonlinearity is the

depolarizing response to an external field created at any discon- . -

tinuity in the susceptibility of the medium. Consequently,

accurate models of dielectric behavior must take account of the effect of
the surrounding medium on the microscopic susceptibility of a

material. Unfortunately, this behavior is very complex. We now

derive a general result for a multi-component dielectric mixture.

The relation of our result to earlier work and suggestions for

extensions follow.

We denote the applied electric field, the local effective

electric field, and the net polarization field respectively by E,

E', and P. We will model the medium by a solution of molecules

with ellipsoidal shapes. The polarizability of a molecule of a

given species will be denoted ai. We have

E' = E + 4nAP (2.1)

and

..

7
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P Pi E ai, (2.2)
i ij"

or

P = (E + 4rAP) a i  . (2.3)
j•

Here Pi is the induced dipole moment of a molecule of species i,

and A is a factor varying from 0 to 1, depending on the shape of

the ellipsoid. A = 1/3 for spheres. Our summations are actually

double summations, in which we sum over all the molecules of each

species, i.e., we use a suppressed notation. We may rewrite

Equation (2.3) to obtain

xi = P/(E + 4wAP), (2.4)

and

(1 - 4wA a ai) P = E a ai (2.5)
i i -- :-

We have
P =X E (2.6)

with the dielectric constant given by

E = 1 + 47x (2.7)

We may obtain our desired relations:

a -i 1 (C - ) (2.8)
i =4- (I - A) + Ae

and

i i (2.9)

1 - 4w A i'

8
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O r o.,% ..

or

1 + 4i(l - A)

(2.10)
1 - 4TrA

These relations neglect permanent dipole moments. In fact,

most materials of interest in hard filters are polar; neverthe-

less our neglect of permanent dipole moments remains valid at

optical frequencies. In the intermediate infrared region the

permanent molecular dipoles can respond to the applied field, so

we must make the substitution

Oi + ai + 2 /(3kT + b hi"i) (2.11) . -

for dipoles pi of series i with concentration ni at a tem-

perature T. In Equation (2.11), b is an empirical constant.

we obtain a relation between the macroscopic parameters ,

and El and 2 for a two-component solution of molecular densities

n I and n2 by an iteration of Equation (2.8):

(n1 + n2  n (,- ) nn
2 -- ) ( 2  (c2  -...1 - A + Ae1 - A + Ae 1 + 1 - A + 2--,'(2.12)

1E 2

This yields

[(1 - A) (n1 + n2 ) + A(nl 2 + n2 61 )) C
.°

(n n2  A 2 + (1 - A) (n2 + n2C)(2.13)

which leads to

I1 + 2a2 2C na1  +n-a 2  ' (2.14) ...

where

9
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a i = 1/(As i + 1- A) . (2.15)

When A 1/3 and 0 we respectively obtain the relations for the

Clausius-Mossotti and "Drude," or more properly, Sellmeier models

given by Bottcher1 and Jacobsson. 2  We note that the simplified

form found in Equation (2.14) is only valid if A is the same for •

both species. It can be extended to include a summation over

several species in a solution.

We can extend Equation (2.14) by induction, and give here an
illustration of the first step in the induction argument, a three-

component solution. We consider the solution to be composed of a

two-component solution plus the third component, and use the

subscript o to refer to the two-component solution. Then from

Equation (2.14) we have

n a e + n a -
0 n n 3 3  . (2.16)n + n ano 3 3--,

Again from Equation (2.14), we rewrite Equation (2.16) as

(nl+n2 ) anlal +n 2 a2 2  3a3 3
n a +n a

(nl+n 2 )a O  + n 3C3 (2.17)

Now

a = (As0 + 1 - A) (2.18)

or

n a e +n a 2
a /[A 1 1 1 2 2 2 + 1 - A] (2.19)0 n a +n a

1 1 2 2

Consequently

n1  n 2
(n1 + n2 )ao  Aa(C 1-1) nl + Aa2 (e2-)n 2  (2.20)

10
V.:
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From Equation (2.15), we see that

(n1 + n2) ao = na I + n2 a2  (2.21)

Substitution of Equation (2.21) in Equation (2.17) gives

[ niai~ s.. ;

1E 3 . Q.E.D. (2.22)

Snia

Clearly, we may iterate this argument to include any number of

species of the same A coefficient.

In general, c, x, and a will be complex. Equation (2.14) is
valid for complex dielectric constants, as may be seen from its

derivation. Part of its utility is that it gives a result for

complex dielectric constants without reference to the details of

the microscopic polarizability. From our derivation, we see that

Equation (2.14) should also include a reasonable amount of __-_

dispersion, by letting c (w)-

In Equation (2.14) we recover the value for a pure material

if either n1 or n2 + 0, as we should. In a mixture £ is reduced

from a value given by a linear interpolation between El and E2 --

for A * 0 due to the interaction between molecules. To see this,

consider a solution when nl n2 . Then we find

2AE 1 2 + (1 A) (£1 + E£2) (.3= . ~(2.23) - - .

2(1 - A) + A(E1 + £2

Comparing this with (£1 + c2)/2 we obtain the variation in £ .-

from its value found from a linear interpolation, 6e:

A( - )2-...-::
Se = . (2.24)

4[2(l - A) + A(£1  + 2)]

N 
W'..-...
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We see that 6c will increase with both A and E2 - c]. This is

consistent with experiment and the discussion given by

Jacobsson. 2 However, part of Jacobsson's treatment contains

errors, since it is based on a faulty premise which we now .
describe. dell

If an ellipsoid with dielectric constant £2 is embedded in a

uniform medium of dielectric constant e1 then a net simple dipole

field proportional to E2 - cl will be added to the effective

field that would occur in the absence of the ellipsoid. 3 Using

this result, Polder and Van Santen 4 obtained the effective

dielectric constant for a dilute suspension of such spheres.

E: El + Cl(E2 - £I/[A£2 + (1 A)el] , (2.25)

where C is the volume concentration of the ellipsoids. This

result is readily extended to include ellipsoids of varying

dielectric constant and shape. A similar result is found by

Landau and Lifshitz for spheres. 5  However, these authors were

mindful of the difference between a dilute suspension and a

strong solution, noting that Equation (2.25) can only be taken as

an approximation for a solution at low concentrations. We may

attempt to extend Equation (2.25) by using the approximation

ElC + CENc 2 - e)/[AE2 + (1 -A)E] ,(2.26)

as Polder and Van Santen in fact did, but this formula also

breaks down as C increases, as may be seen by comparison with w
Equation (2.12) using C n2/(n I + n2 ). Jacobsson ignores this

limitation.

Equation (2.26) is a macroscopic result. It pertains to

particles in a homogeneous background. We may well treat the

interaction between a molecule and distant molecules by an

average field, 6 but must be careful about our treatment of local

interactions. Jackson, 6 shows that the Clausius-Mossotti result

(A = 1/3) should work well for distant interactions, with local

fields accounted for by a perturbation parameter s,

12
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A 1 1/3 + s . (2.27)

For symmetrical systems, such as cubic crystals and pure OW

amorphous materials, the various contributions which include s

cancel. This is why the Clausius-Mossotti equation is so useful.

Departures observed from the values predicted using

A = 1/3 are observed in bicomponent films. 2 This may be due to

a lack of local isotropy, but could well be due to local depar-

tures from stoichiometry and voids. It is impossible to say

without a thorough characterization of the films. As can be seen

from Equation (2.25), voids can have a dramatic impact on the

dielectric constant.

The derivation leading to Equation (2.8) is inexact. A more

accurate formu' tion can be obtained following the Onsager devel-

opment for spht es. 1  In fact, we could use a statistical treat-

ment. 1  In our treatment we have swept statistical variations in

the local dielectric environment of a molecule under the rug,

buryinq the resulting parameter s in our parameter A. In other

words, our treatment is intended only as a model that will

include the etfect of an inhomogeneous local environment.

However, we believe it gives a better picture than an uncritical

use of Equation (2.26). It cannot readily be extended to include

solutions of materials with different values for A. However,

Equation (2.8) should be adequate for our purposes. In fact,

until it is established that departures from the Clausius-Mossotti

relation are in fact due to molecular shape factors rather than

film preparation, we may well choose A = 1/3. For design pur-

poses it is probably best to use empirical values for the

dielectric constants of mixtures, since they are so heavily

dependent on fabrication processes. 2:::.
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2. 2 Rayleigh Scattering from Inhomogeneities in

Local variations from the desired dielectric coefficient

I,.

will mar its performance. We are concerned here with random, '.

local imperfections, rather than regular one-dimension discon-

tinuities in the dielectric profile. These imperfections will

include voids, departures from stoichiometry due to lack of

control during fabrication, departures from stoichiometry due to

compositional segregation following fabrication, surface rough-

ness at film interfaces, impurities, density fluctuations in I£
amorphous films, the occurrence of microcrystals in an amorphous
matrix, and polycrystalline films containing more than one phase,

or randomly oriented crystals with anisotropic refractive indi-

ces. We assume that all these imperfections, if they occur, will

be small in size. This will allow us to make a Rayleigh scat-
tering approximation. Consequently we will not need to consider
the shape of the scattering centers, although except for the case

of voids we may easily extend our discussion to include centers

of any shape. 7  Similarly, we will ignore gradations in the index

profile of imperfections, and model them by spheres of uniform

dielectric strength. A more accurate description will add little

to our conclusions at the cost of great complications, since we

can account for most effects by choosing an effective radius, a,

for the scattering centers. We will also neglect coherence

effects. We denote the scattering cross section by os and the

absorption cross section by 0a. We let the local dielectric

constant of the medium be Em, and that of the imperfection be e i .

We have

8w k
4 ri em 2

as =. k + 2s a (2.28)

and

4a 4k I + 2 1 a3  (2.29) p

1 M
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4nk. .(2. 3

S4 k + (2.30) 2E"

assuming that the imaginary part of E, E" is small compared to

its real part, c'. Here -. <

k = 2r/Em/ O ,  (2.31)

is the wave vector in the medium surrounding the scattering

center corresponding to a freespace wavelength x,. We see that

SI II

a a 3 ri + 2 Lm) (i m ) "

2 T - 2(2.32)as  2 (ka)3 (ei em) 2

Since we are considering a regime in which ka << 1, absorp-

tion will be important, and in fact will probably dominate. An

exception to this rule will again be the case of voids.

From Equation (2.28) we see that scattering will be far more

severe in the optical region than in the infrared. Absorption

will also be more severe, although not proportionately. We will

3ssume that the density of scattering centers is sufficiently

low, so that we may restrict ourselves to single particle scat-

tering. The intensity at a depth z in the filter, I(z), will be

given by

1(z) =o exp fdz n(z) ae(z), (2.33)

where I0 is the input intensity and

Oe = s + Oa (2.34)

We see from Equation (2.29) that the total absorption per unit

length due to a given type of imperfection is proportional to the

tractional volume of scattering centers in the material. Thus for

small centers the relative importance of a given type of imperfection
0I II

is roughly proportional to C (ei - Cm), where C is the fractional

15

* . .. - . . . . . .. . . . . . . - . .. .... * ..-. *_,. " 4.*4



volume of that type of impurity.

We now present models for the dielectric behavior of several

imperfections. Voids will have the strongest scattering for a

given size scattering center, but will not contribute to absorp-

tion. We have

=I , i =0 (2.35)

A tendency towards separation or decomposition of the solution

will drive both El and Em toward e1 or E2. In the limit of -

complete separation we will have

Ei + E2 Em + l • (2.36)

We may treat a partial decomposition in the same manner as a

variation in stoichiometry. Let

• E nl 1e + n2E2 . (2.37)

Then for a fractional change 6 in composition we will have

E: (n El£ + n2E2) + 6(el - E2) , (2.38)

so that

E i  6(cl - E2) (2.39)

and

-E 6(c I  - .E2) (2.40)

We expect 6 to be on the order of a few percent.

If the dielectric constant changes due to a change in phase,

or in the case of an anisotropic medium, to a change in orien-

tation, we model it as

16
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Ei E m ( I 1 ) ,(2.41 )-.' ,'

so that 
.
.-

we expect that A may be on the order of several percent. There

• *. . o -

soy tats easalcag ntedeeti osata h

boundaries of grains in polycrystaline material or at film inter-

faces. Here also we expect a relations like those of Equations

(2.41) and (2.42), with the fractional volume of scattering centers

proportional to the surface to volume ratio of the grains or

films.
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3. WAVE PROPAGATION EN A PERIODIC STRUCTURE

All periodic structures act as filters to waves passing

through them, i.e., they have pass and stop bands. The problem

we wish to solve, the optical filtering properties of a material

with a modulated index of refraction, is very similar to other

problems in acoustics, 1 - 5 electrical transmission lines, 6 ,7  *

microwave waveguides,
8 - 1 6 solid-state band theory,

1 7 - 4 0 and lat-

tice dynamics. 4 1- 4 3 We can gain a great deal of insight from the

work done in these related areas. The first thing that becomes

apparent in comparisons with these other systems is that the stop

and pass bands do not depend greatly on the specific nature of

the wave in question; rather they simply arise from the regular

variation of the response of the transmitting medium to the

disturbance of the wave.

Procedures for analytic treatment of problems of this kind

are well developed. We now summarize them and give examples. We

will then comment on the possibilities for inversion, investi-

gating high-order band behavior, two and three dimensional calcu-

lations, and the similarities and differences between the

response of filters with slightly different index profiles.

3.1 Graphic Displays of Performance

The result of a calculation will be a curve. It may be a

transmission or reflection coefficient curve, 44 ,4 5 displaying the

transmission coefficient, T, or reflection coefficient, R, versus

the incident wavenumber, ko. It may also be a dispersion

curve, 4 6 - 5 0 displaying the real part of the frequency of the

incident wave, w, (which is equivalent to ko) versus the wave-

number in the medium, k. These two types of curves contain simi-

lar information, since attenuated transmission is accounted for

by a complex value for w, and we can easily plot the imaginary

part of w as well as its real part. When the attenuation is

18
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small, there are some advantages to using the dispersion curves

instead of reflection curves. The dispersion curves give a clear -- "

picture of the pass and stop bands above the fundamental bands.

They give a good picture of behavior in three-dimensional .-. .-'

systems, are very useful in analyzing mode coupling and the den-

sity of states, or channel carrying capacity in a given frequency

range, Aw. Consequently dispersion curves are commonly used in

solid-state physics and waveguide transmission problems.

Apparently this type of analysis has been relatively little used

in optics. Optical problems have more commonly been expressed in

terms of reflection and transmission coefficients, which have

advantages when absorption by the medium is large or when the

ratio of the filter thickness, t, to the length characterizing -

its periodicity (unit cell length), d, is small. Since disper-

sion curves are useful in obtaining physical insight, we will

refer to dispersion curves in most of our discussion.

There are two basic starting points for solving wave

transmission problems. The first is a direct solution of the L
partial differential equation (PDE) for the wave amplitude and

phase, t. The second is a conversion from a PDE to a difference -

equation. The difference equation approach is most useful when

the index modulation is large over short, well separated regions

(tight-binding approximation) or when the modulation is small

(nearly free case). In the latter case the difference equation

is obtained by a Fourier transformation of the PDE. Of course,

the direct solution of the PDE is most useful when the index

modulation over a given interval has a behavior close to that in

which solutions are known. Perturbation theory may be used with

either approach. ..-.

Each type of analysis is most useful when expressions for

the dispersion/attenuation or reflection/transmission curves are

given in terms of the functional form of the index modulation.
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However, a good quaIitative understanding of a problem is often

possible in terms of integrals which may be obtained numericail /

for specific instances. Figure 3.1 shows the relationships bet-
ween various functions commonly used in different approaches to

the problem.

The solution to the wave equation and its derivative may be

thought of as a vector, so that the quantity relating the input
and output values of this vector is a matrix. In an optics

problem we actually need to know four functions to completely

specify one of these vectors, (e.g., for propagation in the x

direction we need to know Ex, Ey, Hx , and Hy); so that in general,
we need a four-by-four matrix to describe the medium. However,

we usually assume a scalor behavior for the dielectric, reducing

our four-by-four matrix to two two-by-two matrices, one tor TE

waves, and one for TM waves. Once we have obtained the matrix

coefficients for ¢ and £p' the problem is essentially solved.

3.2 Relationships Between Two Different Approaches -'

Since the medium is periodic, the dispersion curve is given "

by an expression of the form 48

cos kd ; Tr [Al , (3.1)

where A is a transfer matrix. The elements of A will be func-

tions of the frequency of the incident wave, w, and the angle of

incidence of the incoming wave with respect to the filter.

Alternatively we may find the input impedance z i and charac-

teristic impedance, zc (or their corresponding admittances) from

the elements bij of A, from relations of the form, 49 "

a22 z L a 12
a1 1  21 L(3.2)

and

20
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c a 1  a 2 -- It - a + a2 2 )2 1/2a 2 1  . (3.3)

In Equation (3.2) zi is the load impedance. We see from Equation

(3.2) that the impedance concept may be used to describe the

effect of terminations, junctions, and local perturbations.

However, these quantities can also be described by the difference

equation approach. The impedance concept is most useful when the

dielectric is a scalar (resulting in two-by-two A matrices) and

the problem is one dimensional. More general problems can be

expressed in terms of Green's functions, which are closely

related to A, zi , and zc.

From Equations (3.1) (3.3) we see that we may obtain the disper-

sion relation in terms of the system impedance. If the system is

viewed as a one-dimensional transmission line, we have impedances

Z1 1 , z2 2 , and z1 2 (see Figure 3.2), with 4 9

all = z2 2  / z1 2  , (3.4)

a2 2 = zll / z1 2  , (3.5) W
2

a 1 2  = (z1 2  - zllzl 2 )/zl 2  (3.6)

a21  = -1/zl 2 , (3.7)

and

cosh kd = (zll + z2 2 )/2z1 2 , (3.8)

Zc 1 - z2 2 ) + z1 2  sinh kd (3.9)

The reflection and transmission coefficients may be obtained

directly from A, or from Zin. We have 49' 50

R a21  / a2 2  , (3.10)
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aR2  a 2 / a22  (3.11)

and

T1 2  T2 1  1/a2 2  ' 4-.

for reflection on the left, RI , reflection on the right, R2 , and
transmission T1 2 or T2 1 . Of course, we will also have 50

z -z-
R 0 o , (3.12)z +Z.

0 i

if the filter is approached via an impedance zo .

The dispersion curve can also be found from a knowledge of

either B or z. This is especially true if A is symmetric, in

which case all = a2 2 , and/or an absorption may be neglected,

which implies that det[A] = 1. Since the stop and pass band

edges occur at cos kd = 1, in the case in which absorption may be

neglected, the dispersion curve gives the filtering behavior for

a given form for the modulation profile. This provides at

understanding of the inverted problem, the specifications

required on the modulation potential to obtain a set of predeter-

mined band edges. Similar comments apply to the reflection and

transmission curves, provided again that we have expressions in

terms of functions, rather than constants. The required

expressions will become unwieldy if the solution for 0 within the

unit cell of length d cannot be expressed in a compact form.

Nevertheless, we know enough from earlier work to say a good deal

about the behavior of the dispersion curve resulting from a given

modulation profile.

For example, Yeh, Yariv, and Hong 51 have studied light propa-

gation in a filter with a step function (Kronig-Penney) modula-

tion. The results of their calculations are shown in Figures 3.3

to 3.7. In Figures 3.3 and 3.4 the pass and stop bands are

plotted as a function of the angle of incidence, e, with

24
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= k sin e . (3.13) .'

The case studied in Reference 51 dealt only with small modu-

lations, so the stop bands are narrow compared to the pass bands. ...

We see that at low angles of incidence the band edges are insen-

sitive to the angle of incidence. This insensitivity extends to

larger angles as the depth of modulation increases. From Figures --

3.6 and 3.7 we see that the reflectivity curve corresponds closely

to the locations of the stop bands up to fairly high angles of

incidence (in this case 400). In Reference 51 it is shown that m
the dispersion curve (Figure 3.5) dominates the reflectivity

curve at low to moderate angles of incidence. For TM waves the

stop bands narrow as they approach the Bragg angle, disappearing

altogether at the Bragg angle (Figure 3.7). We note that Figure

3.5 shows how attenuation in the stop bands may be incorporated

into a dispersion curve.

3.3 The Transfer Matrix

Once we have a solution for p, we may obtain the matrix ele-

ments of B immediately. 5 2 A second order PDE will have two inde- -

pendent solutions. Let these be Ol and 2, and let

c141 + c 2  2  .(3.14)

Then

= c' c 2 2 ' • (3.15)
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Figure 7. Reflectivity as a function of incidence angle for a TE
wave in a square-well stack.
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solving for cl and c2 we f ind we can write

B (3.16)(X2 Fx[22
with

b =2x 'x -j/ (3.17)

b 12 1 2(x) 1 (x') - 4J(x)4 2 (x')]/D ,(3.18) _

=~ [-1 x) ~x' - 2 *(x) j(x )/D (3.19)

and

22 '()1 x)-*(x)0 2 (x' )]/D ,(3.20)

where

j(X) ~(X)

We see that

b 11 3 - /X (3.22)

b a /ax(3.23)

b 2b21 ab 1 1 /x =b h2 2 /ax' a b32/xx (3.24)

and

ab /x ab/aXI(3.25)

Usually we have

b =b .(3.26)22 I

We note that using Equation (3.1), we have
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Cos kd = [#(X)c2(x'x) - * 2 (x)4'(x'

+ (x)4l(X') - #{(x)4 2 (x')]/2D (3.27)

The expression of the matrix elements in terms of x and x'

.ighlights their connection with Green's functions. Often we

can :educe these expressions to expressions in terms of one or

more distances between x and x'.

For example, for a simple step function modulation with

characteristic distances a and b,

a + b =d , (3.28)

we have 4 9 ,5 3 ,54

[G(ab) H(a,b) 1
B(x,x') = (3.29)

L G' (a,b) H'(a,b) "

3.4 Constant Index

We now illustrate how this may be done, using as an example

the solution to the equations

d2*/dx 2 + = 0 (3.30)

The solutions are

Il cos kx (3.31)

and

02 sin kx . (3.32)

We let
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x= x-a , (3.33-

arnd f ind -W

D = k[cos 2 kx + sin 2kxl = k , (3.34)

b 1 2 = [sin kx cos k(x-a) - cos ka sin k(x-a)J/k _

k- I  sin ka , (3.35)

bll = [kcos kx cos k(x-a) + ksin kx sin k(x-a)]/k

= cos ka (3.36)

b21 = [-k2sin kx cos k(x-a) + k2 cos kx sin k(x-a)]/k

= -ksin ka (3.37)

b22 = (kcos kx cos k(x-a) + ksin kx sin k(x-a)]/k

= cos ka (3.38)

With the identifications

G(a) = cos ka , (3.39)

H(a) = k- I sin ka , (3.40)

we obtain the form of Equation (3.29).

Expressions for the transfer matrix B in literature give the

functions G and H of Equation (3.29) in terms of the unit cell

distance d:

G(a,b) = G (a + b) = G(d) , (3.41)

H(a,b) = H (a + b) = H(d) . (3.42) '

A comparison of Equations (3.29) and (3.16-3.20) raises the

question as to whether the matrix element in Equations
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(3.17)-(3.20) can be expressed in terms of d. We are also

iterested in the connection, if any, between the G and H func-

ions or equivalently, between bll and b22. If such a connection

exists, we may solve for the B matrix elements, given the disper-j

sion relation. This would be a great help, since we can often
obtain the form for the dispersion relation directly, without

first finding the form for B, as we will show in Section 5. This

could be one step in an inversion process.

Equations (3.22)-(3.26) suggest a means of answering both of these

questions. We may rewrite the relations, Equations (3.17)-(3.20)

in terms of the difference between x and x':

x - x' = r (3.43)

Usually we will choose r = d. From the definition,

Equation (3.43), we obtain

ar/ax = 1 , ar/ax' =-1 . (3.44)

We write

dp/dr = 4' , (3.45)

and see that

= ar _ ,,r (3.46)

ax dr ax

and

ax= -' . (3.47)

Also,

2 a2r
a d% r___ ~~~( 3.48)I:_::.:

axax' axax3
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It seems then, that we may write %

be b

B (3.49) - *

-be' b '

i.e., G H' (3.50) ,:.-X

From Equation (3.49), it appears that we may write Equation

(3.1) or Equation (3.27) as

2 b' cos kd . (3.51)

Consequently, if we have a dispersion relation of the form ,-.

2 g(d) = cos kd , (3.52)

we may write

b f , (3.53)

B = (3.54)

-.-

We see then that the central problem is to solve the PDE

equation for 4. We now discuss means of obtaining this solution

further, and give pertinent examples in which the solutions have

been obtained.
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4. SOLUTION OF THE WAVE EQUATION

We will make some simplifications in our discussion, mostly

for the sake of clarity. We will confine most of our remarks to

the one-dimensional problem. We will also deal in general with

real refraction indices and infinitely long systems. All of

these simplifications can easily be extended to treat a more

general case. We will also confine our discussion to systems

that are strictly periodic with period d. This is an important

boundary condition. From the discussion that follows, we will

see that it will not seriously limit the performance of our

filter.

We seek to solve equations of the form1

d U 2 2 2 dtne dU2U+ k2(n (x) - s2J" -- (4.1)
dx

and

d 2 V 2  2  2 dtnhi-s2 /) dV
+ ko (n (x) s )V dx(4.2)

dx

for TM waves and

d 2 U 2 2 2 dnu dU
+ k (n (x) - s )U - - d (4.3)

d x 2  0 
"' ' i d-_X

and

d 2 V +k 2  n 2  2)V d~n(-s 2 /) dVk (n2 (x) -s 2) = dx44)d

dx 2 0 d .-

for TE waves. Even if u is a constant, e will not be. If C

varies slowly we may make a WBKB approximation 2 , 3 and set the

right side of these equations equal to zero. In general,

this approximation will not be valid. It can serve as a good

starting point for perturbation theory, it makes contact with a

large body of literature, and it is instructive. Therefore we

will consider solutions to the equation
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2 2

dx 2

Without loss of generality, we may simplify our discussion by

setting s2 = 0 (normal incidence).

In mechanics we have 4

n(x) - [E - V(x) )/E (4.6)

where E is the energy and V(x) is the potential. In the par-

ticular case of quantum mechanics, we have

k = p/h ,

and an equation of the form Equation (4.5) which is

Schroedinger's equation. A great deal of work has been done on

periodic systems using this equation in the band theory of

solids. n corresponds to the impedance z in transmission line

problems. In acoustics, we have n - pv, for velocity v and den-

sity p. 5

4.1 Piecewise Constant Modulation

The step function modulation is one of the most thoroughly "

analyzed of any periodic response function. 6- 28  It is easy to

construct experimentally, can be solved exactly, and has cosines

and sines for eigenfunctions, so that products of eigenfunctions

can often be reduced to a compact form. Since the system is Z

piecewise solvable, we may multiply matrices of the form

-l
cos k n.i. n. sin k n.2 (4.

-n. sin k0 ni it cos koni i  (4.7)

for each layer of thickness Xi and index ni . The most studied

case is the double layer (one atom), with periods a and b and
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i.0
indices na and nb. After multiplying matrices, we obtain the

dispersion relation from Equation (3.1):

cos kd = cos kona a cos konbb
o na nb "b" "

S(na + nb sin konaa sin k n b (4.8)

nb naoaob

Here d = a + b. We see that when na + nb = n, we find

cos kd = cos kon(a + b) , (4.9)

as we should. When na << nb and a - b we find

cos kd -cos konbb okonba sin konbb (4.10)

A problem of more widespread interest occurs when

nbb << naa, but nb na. Then we have

cos kd cos konaa - (nb/na) kbb sin konaa, (4.11)

where kb = konb. This system was studied by Mason in regard to

acoustic filters as early as 1927, 9 but is best known as the

Kronig-Penney problem, after these authors published their inde-

pendent derivation of the solution applied to a model of energy

bands in solids in 1931.10 Usually a variable ne is defined in

such a way that

nea = (nb/n)k . (4.12)

Using Equation (4.6), with V(x) = -U >> E over region b,
2 2V(x) = 0 over region a, and E = k we have na = 1 and nb U/E,

1 2 10so that -I nbkob/na -2 Ub/ko. This is commonly written as U'a. I0

this model is commonly used for energy band calculations.11-15

If we make the association na Za, 2 kobnb = nb = Zb, we make

contact with the problem of a transmission line with unloaded line
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impedance za that is loaded at distances a apart by discrete

impedances zb:
COS kd cos konaa - (Zb/Za) sin konaa . (4.13) w

For a string or rod loaded by point masses, zb = mw. 5  If we now

consider only long wavelength waves, we may write:

I -cos kd (nb'/na) konaa , (4.14)

or

2 sin 2 ( kd) ko n~a , (4.15)

making contact with the literature on lattice dynamics.

The double periodic square well potential has been studied

by Dubrovskii and Pogorelskii; 14 the resulting expression for the

dispersion relation is complicated.

4.2 Sinusoidal Modulation

Another problem that can be solved exactly is that in which

the potential is sinusoidal. This was first treated by Morse in

1930.29 Morse solved the problem in three dimensions as well as

in one dimension. We write E(x) as

E(x) = - Elcos(2Tx/a) • (4.16)

and letting

= k2 C q - 1 2 1 and c = (4.17)

oo -2 o£2

we may write Equation (4.5) (with s = 0) as

d 2 / dx 2 = [a - 2qcos(2nx/a)p . (4.18)

This is the standard form of Mathieu's equation. 30  The solutions

are circular elliptic functions. There are four basic types of
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these functions:

ce 2 (z,q) = [ A2 r cos 2rz (4.19)
r

ce2n+l (z,q) = A2r+l cos(2r+l)z , (4.20)
r

Se2 n+l(z,q) = 2r+l sin(2r+l)z (4.21)
r

and
se (z,q) B sin(2r+2)z (4.22) -'

2ne = r+zr

where z = wx/a and should not be confused with the impedence.

The functions cem and sem go over to cosine and sine functions

when c1 is small compared to co. Some of them are shown in

Figure 4.1. The Mathieu functions may also be expanded in terms

of cylindrical Bessel functions and Hankel functions, and in the

case of large q, may be approximated by parabolic cylinder

functions. 31 We will discuss various expansions of the Mathieu

functions in Section 6.

Levine has examined the effect of various terminations on

the stop and pass bands pertaining to the Mathieu problem.

Perturbations were studied by Slater, 3 2 who considered a dielectric

of the form co + elcos 2z + e2 cos 2pz, as well as Eo + Elcos 2z

+ E2cos z- Slater considered two- and three-dimensional per-

turbation problems as well as the one-dimensional problem.

4.3 General Observations

Since both the Kronig-Penney and the Mathieu problems are

exactly solvable, comparisons have been made of the stop and pass

bands created by these modulation profiles. The result depends

on the relative size of the distances a and b in the

Kronig-Penney profile. When a b, the two profiles give very
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similar results. The width of the pass bands relative to the

stop bands increases with the ratio of b/a. 3 3

As a wave propagates through the filter, it is partly.*-.

reflected due to modulations in the refractive index. ,

If the wavelength is much greater that the periodicity in

(nkod<<l for a mean index n), the wave will not see the index

modulation, and the wave will be passed. When the wavelength in

the medium nearly matches d, the wave will interact strongly with

the modulated profile; constructive interference will occur between 7

reflections that occur at distances d apart. This will also

occur at wavelengths which are submultiples of this critical

wavelength--a series of stop and pass bands will occur. Examples 6-..'

corresponding to Equation (4.10) are given in Figures 4.2 and 4.3,

where y - nb-na. The width of the stop bands is roughly propor-

tional to the amplitude of the index modulation.

By our argument, we see that successive stop bands arise in

part from the corresponding Fourier components of the modulation

profile. Thus the second stop band is sensitive to the strength

of the second Fourier component of the index modulation, etc. .

Consequently the widths and positions of the lowest bands are not
very sensitive to changes in the modulation profile, only to its

periodicity (length of the unit cell). Changes in the shape of

the profile have their greatest effect on the higher-order bands.

For example, if we approximate a sinusoidal index modulation by a

series of thin steps, we may expect very little effect on the

location of the edges of the lowest bands. At high bands

corresponding to wavelengths on the order of the step thickness,

we would anticipate relatively large changes. of course, these ""__"

higher order bands may well correspond to wavelengths that lie

above the bandgap of the dielectric materials. If the step

thickness is 100 nm, then we would expect strong changes in the

bands corresponding to energies of say 10ev. However, this
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region is not of particular interest. In other words, the modu-

lation depth and overall periodicity d are the main parameters

affecting the band edges of interest. Fine details of the shape

of the modulation are not very important. Bands corresponding to

the Mathieu problem are shown in Figures 4.4 and 4.5. A com-

parison between the bands for the Kronig Penney and Mathieu *

problems is shown in Figures 4.6 and 4.7.

If the system is multiple, periodic higher-order bands at

corresponding multiples will be affected. We will discuss this

further in the next section, but we can see from the argument

given above that since a multiple periodicity implies that second

and higher order Fourier components of the modulation profile

will be large, the stop bands (band gaps) above the fundamental

will be widened.
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5. DIFFERENCE EOUATION CALCULATIONS .-
"4

Often we can convert a PDE into a difference equation by an

appropriate series transformation or decomposition, followed by

an approximation which allows us to limit the coupling that

occurs between the basis states of the decomposition. We now

give two examples of how this can be done. The first is a

Fourier transformation; the second is known as the tight binding,

or LCAO method. It is the approximation which limits the number

of connected basis states appearing in the difference equation

that makes the difference equation method practicai. consequently,

this approach is only useful when such an approximation can be

made.

5.1 Fourier Transformation
1 ,2

We wish to solve the PDE of the form in Equation (4.5). We -

make the decompositions

ikjx
(X) = A.(k)e (5.1) ","-.

where

k. = k + 27rj/d , (5.2)

and

2 (x) = g e iK x (5.3)

where

K 21T/d .

Substituting Equations (5.2) and (5.3) in (4.5), we find

'.,; , .- 
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iK£ x i k .x..:-
[( k +kj )2 + k2 [s 2 _ [ge K )] A. (k)e ik 0 . 54),x-

J1 We* £ J0 .(5.4)

In principle, Equation (5.4) is exact, but involves an infi-

nite sum over the Fourier components gz for the square of the

index, n2 . We need to drastically reduce the number of these

components. Fortunately, if n2(x) is a reasonably smooth ,

function, we may terminate the series in £ after a few terms. As

an example, we consider the Mathieu problem, in which we have

= (5.5)

Substitution of Equation (5.5) into Equation (5.4) now gives

2 22 2
(k + kj + k ] A.= k [Aj +Aj] (5.6)

0 " 0 j-1 +

This is a solvable equation. Rather than pursue it here, we go

on to derive a similar equation by another means.

5.2 Tight-Binding Approximation 3

A great deal of work has been done using difference equation

calculations in the band theory of solids based on the tight-

binding approximation. 3- 12 This corresponds to the case in which

regions of large refractive index are sufficiently separated by

regions of low refractive index that they form optical wells

which are only weakly coupled. Parallel calculations have been

made in three dimensions as well as one dimension and include

investigation of the effect of various terminations (surface

states). Although they are most accurate in cases of very deep

modulation of the index profile, they provide an instructive

insight into band behavior, and serve as good points for com-

parison with more general calulations.

Let us assume that we have a complete set of known orthonor-

mal solutions n for the equation
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+ n (x) So p - 0 , (5.7)

and that we wish to solve Equation (4.5):

2 2 2+ k [n (x) - s = 0 , (5.8)
0

for some

2 2 2
n (x) no x) + n (x) . (5.9)

We may expand ' in terms of some as"yet unknown coefficients an

as follows:

'a = an~ n  .(5.10)

n n
n

Upon substitution of Equation (5.10) into Equation (5.8) we obtain

2 2 2 2 2
ak - S = n ankon n (5.11)

n n

If we multiply this equation of *m and integrate, we will obtain

the results

22 2 2' k2a k rs a k dx ( ) n X 2( )(5.12) .-..-.
an k Ls - So n m-,.(x)- (x).,

n n

Since the functions n(X) are known, the integrals are obtainable

in principle, and we may solve for the coefficients an in terms

of them. The result will be a series of coupled equations. This

can get very messy if a given initial solution m is coupled by

n(x) to very many other solutions *n" The conversion to a dif-

ference equition is only practical if the coupling is only to a

few other solutions. An example in which this can occur is when

the 0. are localized in a region smaller than the (unit cell)

distance d. We consider the case in which we have

f dx Om(x) n(x)n 2 (x) = , m

= , m=n+l

57



F- %A.

=0 (m ( -n) > 1 5.13)

Then we will findW

-'- a ( s - a)a o, (5.14) -.

n+1 n-i n

with S2 2 s = S. we see that we have greatly simplified the K

solution by our approximation. It has been found useful to

assume that an is Of the form

an X ~n (5.15)

Substitution of Equation (5.15) into Equation (5.14) yields

Xn-l [BX2 - - + 8] =0 *(.6

We now rewrite Equation (5.16) as

2 [sa], 1 0(5.17)

We note that Equation (5.17) is of the same form as the eigenvalue

equation for the transfer matrix, B. That is, if we wish to

solve the equation

*(x+d) = Ai(x) ,(5.18)

we need to find the roots of the transfer matrix as given for

example in Equation (3.28):

G(d) X H(d)
0 .(5.19)

G'(d) HI(d) X

This gives

X2 [G(d) + H'(d)]X + 1 =0 ,(5.20)
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since det[8 = 1. % , a

We know that the dispersion relation is *

Tr[BI = G + H' = 2coskd , (5.21) -

and take advantage of this insight to make the assumption ,,.

(s - 2coskd . (5.22)

Now if we substitute Equation (5.22) into Equation (5.17), we -'-

will find

X= coskd + isinkd = e±ikd (5.23)

In turn, substitution of Equation (5.23) into Equation (5.15) -"-

will bring

peiknd ,-iknd
an P+ e (5.24) ''."

Since the basis functions On were assumed to be known, the

problem has now been solved given the appropriate boundary con-

ditions. We see from Equation (5.24) that we have shown that the

assumption Equation (5.22) implies that the expansion Equation

(5.10) is in terms of Block waves. Usually the equivalence is

derived in the other direction: the Block expansion allowed due

to the periodicity of the system implies the condition Equation

(5.21).13,14 We note that Equations (5.6) and (5.14) are of

similar form. This is in part due to our use of a Block

expansion.

* -.- _.

5.3 Surface States

We can investigate effects such as terminating the filter

through the boundary conditions. We let the filter consist of N '

periods of length d, so that the filter has a length .
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L Nd . (5.25)

We then impose the boundary condition that t be zero at L:

an = 0 (5.26)

Together with Equation (5.24), Equation (5.26) implies that

an Asin(N - n)kd / sinNkd . (5.27)

Since A / sinNkd is simply a constant normalizing factor, we

drop it in favor of

an sin(N - n)kd (5.28)

We obtain our other boundary condition at the termination by

making the substitution '-
"

8a I = (s - a')a 0  (5.29)

for Equation (5.14). Then Equations (5.28) and (5.29) give

(s - c')sinNkd = sin(n - 1)kd . (5.30) .'-

From Equations (5.30) and (5.22) we get

(a - c')/ + 2coskd = coskd - cotNkd sinkd (5.31)

or, with

( - e ) / S , (5.32 )

= - sin(N + l)kd / sinNkd . (5.33)

The intersection of this family of curves with the curves

(kd) = constant yield solutions for > 1. One solution,

corresponding to a0 , the "surface state," will give a complex

value of k. This wave will not propagate through the filter.
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The edges of the pass band are given by the dispersion rela-

tion Equation (5.22). The density of states will be greatest at ,.

the band edges.

5.4 Extensions and Multiple Periodicity

The difference equation tack is a useful means of studying

the effects of multiple periodicity. The conversion to a

difference equation has been used extensively for this purpose in

band theory and lattice dynamics. The published literature is a .-

valuable guide for parallel calculations which we might wish to

make. However, the results that have been obtained in these

fields are not readily used in optics, since energy band results

seek to solve for the eigenvalues (or energy) of the Schroedinger

equation, which is equivalent to solving for s in Equation (5.12)

or s in Equation (5.14). We can easily take s = 0, and wish to find

the relation between ko and k. We are also interested in an algorithm

that is generally useful beyond the nearly free and tight binding

approximations. It seems that this can be done. Let

?(x)i>""

Then

,(x+d) = B(d)i(x) (5.35)

and
-.- 1 +-

i(x-d) = B (d)4(x) (5.36)

Hence

*(x+d) + ,(x-d) = [B(d) + B 1 (d)]*(x) . (5.37)

With
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kd
p(x+d) e t(x) (5.38)

and

i(x-d) = e- kdO(X) , (5.39)

we find

B(d) + B- (d) = 2cosh(kd) (5.40)

From Equation (3.29) (and the discussion following it in Section 3)

we have

G H' Lf

B =(5.41)

The inverse of B is

B = (5.42)-G ' "G]

Therefore we may write Equation (5.40) as -
-I .'.,

G+H' 0
2 cosh(kd) , (5.43)0 G+H' ,::

or

(G+H') = 2cosh(kd) . (5.44)

It seems that the difference method may be applied to a general

problem, if the boundary conditions are suitably chosen with

respect to the unit cell. This would be very useful for the

analysis of a multiply periodic medium. Consider the system
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- (5.45)

CE x (5.46)

where the subscripts refer to distances with respect to the argu-

ment of the r.h.s. We f ind

+ + -

Now~I +J~ +- a' B-- (5.47)

aa=CL4 (5.48)

and

-1+ (5.49)

Therefore

Xa + X6 (a + a-~j (5.50)

From Equations (5.47) and (5.50) we get

)(a + 0 ) (8+ aL (Xa X)

+ + -9

'b+a +'+,-'~

= d + 4* + (5.51)

we write Equation (5.51) as

[+ C,- )(aL + 8 )-214' =
4 d +(5.52)

with

= X4'(5.53)

a nd

-1 (5.54)

we have
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r, _: V - rb .. V7 - 1- 1. 7n T

-i- 2- ,(5.55) .:.
.9.-*b'

o r

-+ a= + (5.56)

We let .

M Oa (5.57) •

and

) e=e . (5.58)

Then we have

Tr[MI = coshkd • (5.59)
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6. PERTURBATION EXPANSIONS

We now look at some of the ways in which we can find

approximate solutions for p and for the dispersion relation when

the index modulation has a small departure about a profile for

which we can solve.

6.1 Pedestrian Expansion

If we know that our modulation profile is similar to one for

which we have a closed form solution we may make expansions about

both the known solution and its corresponding modulation profile.l . .

We let the known solution be '1, and the unknown solution be '.

We then write

' - l i+ 6 + 6 2  << 1 (11132 1 31 "(6.1)

As 61 increases, we will need to include more terms in the expan-

sion for '. Similarly, if the dielectric constant for the known

case goes like n (xl), we write

2 2 2 2 2
n (x) = nl(x) + 62 n2 (x) + 6 2 n3 (x) (6.2)

for n2 (x) in the unknown case. Then, upon substituting Equations

(6.1) and (6.2) into Equation (4.5) with s2 0:

2 2 2 2d 2/dx + k n (x) = 0 , (6.3)

we obtain

d 2 + 61' 2 + 6 2 )/dx 2-i1 ) / x 1 2 1

2 2 2 2 2 2
2(n + 6 2 n2 + 623 n + 6 + 62,3) = 0 (6.4)
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We can separate terms of a given order and arrive at a series of

equations: ' .0 %

+ k 2 n2 l 0 (6.5)
2 22

+ k n1 1  -( 0 6) , 1 (6.5)

2+ k nl 2  2

and

2 2' 2.'-'+ k nk= )(2 / 1 nsi- (/S)n~p (6.7)

Equation (6.5) is our solvable homogeneous equation with a

known solution. Equations (6.6) and (6.7) are similar to

Equation (6.5) but are inhomogeneous. We can think of Equation -

(6.6) as a problem in which the solution to Equation (6.5) drives

an oscillator of the same form as that of Equation (6.5).

We can learn something about the dispersion relation (ko

versus k) if the amplitude of the index modulation is small by

making another expansion, similar to that of Equation (5.1). We K

write

ik .x

k(x) = j AW(k)e J (6.8)

with

k. = k + 27rj/d . (6.9)

6.2 Band Gap for Small Perturbations

We assume a small perturbation in the index modulation about

a value for which we can solve. Then we have 2 ,3
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.9.

ik x ik x
mx =Ae + lk ~e (6.10)

We begin by letting m =0. We write our equation for 'pas

'"+ k 2(n 2 + 6 n)' 2 0, (.1

with

2iK x
2.

and

K9= 21TZ/d .(6.13)

Then we substitute Equations (6.9), (6.10), and (6.12) into

Equation (6.11) and find

ik .x
A )ikx +6 1 j(k~ 2 2 k.2)Ae

+ 5 2 k A g e

2' i(k.+K )x
+ 66 k ~~ A.e =0. (6.14)1 2 0 gx

To first order we let

1 2
Then to first order we have approximately 2

'2 2 2k l ik .A Oj~~n n k. A.)e .(.5

+ J1[kn k A +kg 3 0

We now operate on Equation (6.15) with
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d -ikx
f dx e

we f ind

k n k , j 0 . (6.16)
0 0

A 2_22 j* 0 (6.17)
k.2-n 2k2 0

0 0

We see that to first order in 6, k is unchanged, and the form

for is modified slightly. If we operate with

d
f dxe' i

0

we find to second order in 6 (see Reference 2)

22 2 d i(k.+K -k)x
Ao(kon 2 - k2)d +6 6i2 'Ajg f dxe 0 . (6.18)

0

The integral vanishes, unless

= -j .(6.19)

Hence

A(k 2 n2 - k2) +6 6 A =0 . (6.20)
0 00 1 2 Ag..

From Equation (6.17), we find

2

k = kn + 2 22 gjg (6.21)

j k.-

We see that a problem develops in Equations (6.17) and

(6.21) when k kj. We can patch this up by increasing the

contribution from the mth term:
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ikxik x ik.x
pA e x+ A e m +6ZAe(.2

o 2 2 2 4 ~ M 0 (6.22)

22 2 2 2
A0 n 0k + M~g (6.23)

a 00 m

-mgo m (6.25)

For k k -mwe find approximately

k2  k_ (n2  6g (6.26)

This creates a band gap with width

Ak k -~= - k (6.27)

2band is proportional to the mth component of n.
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7. CANDIDATE MATERIALS

The impetus for this report was a literature survey of

suitable candidate materials for graded index optical components

and devices. Such an undertaking would be a prodigious task, .5'

especially in view of the limited data available on the optical

properties of materials, and the vast number of possibilities.

This is all the more true because of the decision to direct the

bulk of the effort of this work to the analysis discussed in the

first six sections of this report. Nevertheless, the author

wishes to present his initial impressions of the possibilities

for suitable materials, albeit from the prospective of a novice

and an outsider, and to report on a limited literature survey.

First, some general considerations and comments are in order.

7.1 General Comments

The throughput of an optical device and its immunity to

damage under high-power conditions will be enhanced if the

absorption is low for a given optical path length, i.e., if

ni << nr. This mitigates against the use of amorphous materials,

which in practice tend to suffer from large absorption. This is

due in part to a very high density of scattering centers arising

from local, microscopic inhomogeneities, such as the frequent

occurrence of voids, and a general tendency to a high density of

impurities. This is especially likely if the stoichiometry must

be varied over a wide range. The latter problem is no doubt

enhanced by the former difficulties. Furthermore, amorphous

materials tend to possess wide regions over which infrared

radiation is absorbed by photons. Since we wish to vary the

refractive index continuously, a second implication of the need

to minimize absorption and scattering is the high desirability of

using materials with good mutual solubility; we seek compounds

possessing a similar structure with as different a refractive
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index as possible. The third corollary is the requirement that

the chosen compounds be amenable to manufacture with a low con-

centration of defects.

The chosen materials should be rugged, that is, they should

be chemically resistant, especially to moisture, should have good

mechanical strength, and a high phase transition temperature.

Their refractive index should not vary rapidly with temperature.

The desirability of minimizing short-range disorder suggests that

the solid solute materials be chosen with nearly equal bond

lengths as well as identical structures. This will be especially -

true if the creation of a single crystal device is attempted. A

basic premise of the following presentation is that the bonding

lengths will usually be dominated by the nonmetals in the com-

pounds, rather than the metals.

This can be seen from Table 1, which gives the radii of

several atoms of interest. 1 We note that covalent bond lengths

are especially likely to be dominated by the identity of the non-

metal atoms. In these cases the small metal atoms often fit into

voids created by nearly close-packed nonmetal atoms. Thus we may

expect to vary physical properties without significantly

affecting bond lengths by substituting different metal atoms with

a given nonmetal atom. A good example of this occurs for com-

pounds of transition metal atoms with chalcogenide atoms.

Assuming that this hypothesis is true, we should seek -ompounds

with identical structures, different cations, and anions which

are either identical or of nearly the same size.

To ensure structural compatibility in a solution, we will

also restrict ourselves to groups of atoms which form compounds

with the same structure as well as closely matched lattice

parameters when all possible combinations of atoms are con-

sidered. Therefore, we will organize our discussion in terms of

crystal structure in general, and in terms of the chemical
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TABLE 1

CRYSTAL RADII

Li Be B C N 0 F

0.60 0.31 0.20 2.60 1.71 1.40 1.36

Ns Mh Al Si P S Ci

0.95 0.65 0.50 2.71 2.12 1.84 1.81

Cu Zn Ga Ge As Se Br

0.96 0.74 0.62 2.72 2.22 1.98 1.95

K Ca Se Ti V Co

1.33 0.99 0.81 0.68 0.59 0.52

Rb Sr Y Zr Nb Mo

1.45 1.13 0.93 0.80 0.70 0.62

Ag Cd In Sn Sb TeI

1.26 0.97 0.81 2.94 2.45 2.21 2.16

Cs B a La H f TaW

1.69 1.35 1.15 0.78 0.68 0.70

Hg TI Pb

1.10 0.95 0.84
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properties of the anions in particular. Since we did not

consider dispersion in the earlier sections we will not give it

much attention below. Also, we will concentrate on linear

refractive indices. Finally, we will concentrate on simple com-

pounds, as they should have fewer absorption bands in the 6.

infrared.

The optical behavior of a compound is strongly affected by

the chemical nature of its bonds, in an analogous manner to many

of its other properties. It appears to the author that the ionic

materials often have the desirable attributes of low optical

absorption, low defect concentrations, and high melting points,

as well as wide band gaps. In many instances, especially in the

case cf the halogens, they are subject to chemical attack, par-

ticularly by water, and often they are brittle. However, a more

se-ious difficulty is that ionic compounds tend to have low

indices of refraction, and a range of refractive indices

extending to high values is often desirable.

7.2 Halides

The fluoride compounds form a group of highly ionic

materials that have well developed and well understood optical

properties. They have very low absorption coefficients.

However, their refractive indices are uniformly low (nr ranges

from 1.25 to 1.53) seriously restricting their versatility. Some

of the pertinent properties of several fluoride compounds are

given in Table 2. In the tables, a is the lattice constant (all

lattice constants in the tables are given in angstroms), E. is

the hi h-frequency dielectric constant, cs is the static

dielectric constant, and wt and wL are respectively the trans- Sir-

verse and longitudinal optical photon frequencies at the gamma

point in cm- I  Gisin 2 found that films of SrF 2 showed improved

performance with increasing substrate temperature during
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TABLE 2

FLUORITE STRUCTURE

Compound a nm

.5 2 5

CdF 2  5.388 1. 1.53

CaF 2  5.463 1.437 1.43-1.46 1.424 6.8

HgF 2  5.54

EuF2  5.796

SrF 2  5.800 1.25-1.36 7.69

PbF2  5.'.927

BaF2  6.200 1.478 1.38-1.53 1.451 7.33
2S

SrC12  6.977 9.19

BaC1 2  7. 34

YLiF 4  1.458
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formation. This was attributed to a decrease in porosity.

Gisin states that the optical constants of films of SrF 2 depend

on the layer thickness due to nonuniform stoichiometry. Hall 3

found that the index, absortion, and crystallinity of MgF 2

increased with age. Hall attributes the increased absorption to

the creation of vacancies with the onset of crystallization.

Barnes and Gettemy 4 reported on the optical properties of LiYF 4,

which has a very low temperature coefficient.

The CsCl materials also have low dielectric constants. Data

on these compounds are given in Table 3, much of which is taken

from ;rown, 5 Burstein et al., 6 Lucovsky, et al., 7 and to a

- lesser extent, Rao. 8  (These authors are also the main basis for

Tables 4, 15, and 24.) The best bet for this group of materials

appears to be either TlCl/NH 4Cl or TlCl/TlBr. There is a wider

selection of NaCl structure materials with a fairly wide range of

dielectric constants (see Table 4). Unfortunately, the alkalai

halides can develop color centers.5 This may present a problem

for work in the visible, but the Ag.Nal_,Br and AgxNal-xCl

systems appear to be attractive for work in the infrared. In

most ionic compounds, we expect only a 10% change in the

dielectric constant for two materials with closely matched lat-

tice parameters, but in these cases we find a change of almost a

factor of 2.

Compounds of the halides with many of the transition metals

have a layered structure. In these materials the small cations

are trigonally coordinated with the larger anions (see Figure

7.1a). There are also layered compounds of chalcogenide atoms,

which we will discuss below. In these materials the basic struc-

ture consists of three parallel planes. The two outer planes are

made up entirely of anions. The middle plane consists only of

cations. A sandwich structure results, with the sheet of metal

atoms inside the sandwich, and all chemical bonds directed into
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TABLE 3 owl

CsC1 STRUCTURE HALIDES

Compound a e :swT wL

TICI 3.84 4.76 31 62 Wl

NH4C1 3.87

TL~r 3.97 5.34

CsCI 4.11 2.62 7.20 99 165

TII 4. 20 29.6

CsBr 4.29 2.83 6.51 73 112

CsI 4.56 3.02 5.65 62 85
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TABLE 4

ROCKSALT STRUCTURE HALIDES

Compound a EwEsWT WL

Li F 4.02 1.93 9.27 307 662
Li H 4.08 3.6 12.9 590 1,120

Na F 4.67 1.75 5.3 239 414 A

Li Cl 5.14 2.75 11.05 191 662 __

K F 5. 33 1.85 6.05 190 326 vr l

LiBr 5.49 3.17 13.2 159 325

AgCI 5.55 4.04 12.3 101

NaCi 5.64 2.3 5.62 164 264__

Rb F 5.63 1.93 6. 5 79

AgBr 5.77 4.62 13.1 79
NaBr 5.94 2.61 5.99 134 209

LiI 6.00 11.03

CsF 6.01

KCL 6.28 2.15 4.68 142 214
Nat 6.46 2.96 6.60 117 209NO
RbC1 6.54 2. 18 4.9 116 173
K Br 6.59 2. 35 4.78 113 113
Rb Br 6.87 2. 34 4.9 88 127

KI 7.05 2.67 4.94 101 139
RbI 7.33 2.58 5.0 75 103
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the sandwich. Only a weak Van der Walls interaction occurs

between the anions in adjacent sandwiches. For this reason the '"

layered compounds are attractive in designing materials with

modulated physic -roperties. Even if adjacent sandwiches were

comprised of different compounds, rather than true solutions,

there should be a low level of interface states.

The arrangement of atoms within any given sheet is hexagon-

al. The stacking of adjacent sheets in layers that assume a

trigonal coordination is ABC, so that a plane taken through the

material as shown in Figure 7.2 will contain an atom from each

sheet in the structure, resulting in the representations given in

Figure 7.3 and 7.4. 9 - 11 These figures depict the two stacking poly-

types assumed by halide compounds, the Cd1 2 and CdBr 2 structures.

Lattice constants for halide compounds with these structures are

given in Tables 5 and 6. On the basis of their lattice

constants, CdI 2 type systems of interest appear to be TixVlxCl2 ;

" bromides of Fe-V-Mg-Mn solutions; CoxFex1,T2 ; and iodides of

Ti-Ge-Mg-Mn, Ca-Yb-Tm-Pb, and Cd-Zn-Bi-Te solutions. Similarly,

CdBr 2 structure materials worth looking into are ZnxCdl_xBr 2, and

chlorides of Ni-Co-Fe-Mg and Mu-Zn-Cd solutions.

Almost all of the optical measurements on layered compounds

have been made at short wavelengths, with a view toward eliciting

information on their band structures. Sinha and Mukherjeel 2 and

Doni and Grosso 1 3 have made such measurements on Pb1 2 , which has

many stacking polytypes, and an index of refraction of 2.9.

Yashiro, et al., reported on the emission spectra of Pbi 2 , and

Ghita, et al, made ellipsometric studies on it. 1 5  References 16

and 17 report on the phonon spectrum of Pb1 2 . Kondo and

Matsumoto made reflection measurements above 4eV on CdCI 2 and

CdFr 2 crystals,'
8 while Srivasta and Bist measured the infrared

absorption of CdI 2 19 Anderson and Lo 2 0 give the phonon spectra

of several layered halides. Many trichlorides also form layered
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0 TABLE 5

Cd1 2 STRUCTURE - HALIDES

Compound a c

TiC12  3.561 5.875
VC12  3.601 5.835

TiBr2  3.629 6.492
CoBr2  3.68 6.12

FeBr 2  3.74 6.17
VBr 2  3.768 6.180P
MgBr2  3.81 6.26
MnBr2  3.82 6.19

C01 2  3.96 6.65
Fel2  4.04 6.75

Ti1 2  4.110 6.820
Gel2  4.13 6.79
M9, 2  4.14 6.88
MnI 2  4.16 6.82

B iTeB r 4.23 6.47

Cd1 2  4.24 6.84
Zn 12  4.25 6.54
BiTeI 4.31 6.83

Ca1 2  4.48 6.96
Ybl2  4.503 6.972
TrnI2  4.520 6.967
Pb1 2  4.555 6.977
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TABLE 6

CdBr2 STRUCTURE

Compound a c

NiC12  3.543 17.335
Cod2 3.544 17.430

FeC12  3.579 17.536
MgC12  3.596 17.589

Mn12 3.686 17.470
Nir2 3.708 18.300

ZnC12  3.774 17.765
Cd12 3.854 17.457

Ni1 2  3.892 19.634

Znr2 3.92 18.73
CdBr2  3.95 18.67

Zn1 2  4.25 21.5

Pbl 2  4.54 20.7
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compounds. The infrared properties of TiC1 3 were studied by

Emeis, et. al.21

7.3 Oxides

The oxides form a natural group of optical materials, due to

their wide band gaps, high melting points, and resistance to "

chemical attack. There are far too many of them to be given a

proper treatment in this paragraph; consequently our discussion

will only be cursory. As elsewhere in this section, we will con-

fine our remarks to simple compounds. The simplest system is the

Rocksalt structure. There are a large number of oxides in this

system, with an almost continuous distribution of lattice

constants, as can be seen from Table 7. The most closely matched

systems are NixTilxO, NbxMgl-xO, and PuxPal-xO. The latter

systems have a lattice match to within 0.05%. Many of these oxides,

especially those of vanadium and titanium, form a series of

defect-structure nonstoichiometric compounds. Nonstoichiometric

oxides are discussed at length in Sorensen, 2 2 and will not be

dealt with here. We note from the entrees on the dielectric

constants in Table 7 that the oxides tend to have somewhat larger

dielectric constants than the halides.

The Rutile family is a second collection of familiar oxides.

These materials are listed in Table 8, from which we see that

the Ge-Mn-Cr, Ta-Sn-Nb, and WxMol-x systems are the best possibil-

ities for Rutile-type oxides. As in the case of the dichalcoge-

nides, which we will discuss in paragraph 7.4, the small

molybdenum and tungsten cations form dioxides with nearly equal

lattice constants. Lattice constants for Table 8 and most of the

following tables were obtained primarily from Wyckoff. 23 ,24 A

similar but slightly more complex family of oxides is given in

Table 9, which suggests that solutions of Cr-Ga-Rh-Fe with SbO 4 ,

of Nb-Ta with Cr0 4 , of Sb-V with RhO 4 , TaxNbl-xFeO4,

FexRbl-xNbO4 , and FexRhl_xTaO 4 are suitable candidate materials

for continuously modulated devices.
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TABLE 7

ROCKSALT STRUCTURE OXIDES

Compound a s

vo 4.062*
NiO 4. 1684t
TiO 4.1766*

NbO 4.2097
Mgo 4.2112 2.95 9.65

coo 4 .26 67 t
TaO 4.43
MnO 4.4448 4.8 -

ZrO 4.62
CdO 4.6953 5.40
CaO 4.8105 3.33
YbO 4.86

PuO 4.959
PaO 4.961

SmO 4.9883
NpO 5.01

EuO 5.1439
SrO 5.1602 3.46

*V and Ti tend to form a series of non-stochiometric oxides *
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TABLE 8

CASSITERITE OR RUTILE STRUCTURE OXIDES

Compound ac n

GeO2  4.395 2.859 1.6525
M1nO 2  4.396 2.971
Cr0 2  4.41 2.91

IrO 2  4.49 3.14t
0502 4.51 3.11
Ru0 2  4.51 3.19t

*Ti0 2  4.594 21.958* 2. 3 -2.7

TaO 2  4.709 3.065
Sn02  4.737 3.186
Ntb0 2  4.77 2.96

TeO 2  4.79 3. 77

W02 4.86 2.77

Mo02  4.86 2.79

P00 2  4.946 3.379

*Ti tends to form a system of nonstochiometric oxides.
t metallic
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TABLE 9

RM04 ARRANGEMENT

Compound a c

AlSb04  4.510 2.961
CrSbO4  4.577 3.042

4. 59 3.03GaSbO4 4.0
RhSbO4  4.6017.0
RhVO 460 2.923

Fe~O4 4.623 3.011

CrTaO4  4.626 3.009

Cr~O4 4.635 3.005

Fe~O4 4.672 3.042
FeNbO4 4.68 3.05

Rh~O4 4.684 3.020
Rb Nb04 4.686 3.014
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The rutile materials tend to exhibit high dispersion.

Studies of titanium dioxide films have been made by Cherepanova

and Titova, 2 5 ,2 6 Schiller et al., 27 Joseph and Gagnaire 2 8 and

Perney et al. 29  The index of refraction of TiO2 can vary by 10%

depending on the preparation procedure. The absorption coef-

ficient, <, can be reduced to 10- 4 with proper care. It can also

be raised very high with the addition of impurities such as

copper. 30 Gagnaire and Joseph also studied thie Ti/TiO 2

system.3 1  Samara and Peercy measured the pressure and temperature

dependence of es for rutile. 32 The optical properties of the

metals RuO 2 and IrO 2 were studied by Goel, et al. 3 3 while the

Raman spectrum of TeO 2 was taken by Pine and Dresselhaus. 3 4 The

optical properties of SnO 2 are discussed in references 35-37.

In addition to the Rutile structure, MoO 2 and W02 can also

have a monoclinic structure closely resembling the Rutile struc-

ture. Since MoO 2 and WO2 can occur in more than one phase, the

attractiveness of the MoxWl-x0 2 system is considerably reduced.

This consideration is accentuated by the implications of a

monoclinic structure for the anisotropy of the dielectric

constant. The dioxides of Re and Tc also have this monoclinic

structure. The lattice parameters for these materials are given

in Table 10, along with those for (monoclinic) VO2 , which has a

closely related structure. Since V easily forms a series of

nonstoichiometric oxides and VO2 is not only imperfectly matched

to the crystal structure of other oxides, but undergoes a metal- -.-

to-insulator phase transition at 68 C, it is not a promising com-

pound. We conclude that although the dioxides of a Re, W, and Mo

are closely matched, the materials listed in Table 10 are

not good candidates for continuously modulated devices. Studies

on tungston oxide films are reported in References 38-40. - -

The optical properties of VO2 were measured by Mokerov and

Begishev as a function of temperature. 4 1 Vanadium oxide films
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TABLE 10O

MONOCLINIC DIOXIDES..

Compound a b c n

v2 5.743 4.517 5.375 2.81

Tc2 5.53 4.79 5.53

ReO 2  5.562 4.838 5.561

W02  5.565 4.892 5.650
moo 2  5.584 4.842 5.608
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were studied by Gur'yanov and Terukov. 4 2  Other vanadium oxides

were studied by Mokerov et al., 4 3 Mokerov and Ryabinin, 44 and

Van Hove et.al.
4 5

Many dioxides have the cubic fluorite structure; these are

listed in Table 11. From Table 11 we see that CmxAml-x0 2'

PuxCe/ 1 xO2 , and UO2PrO 2 , should form continuous solutions, with

lattice matchings of better than 0.3%. Taguchi et al., 46

studied ZiO, films, and found that the dielectric constant varied

from 1.72 to 2.0, depending on the gas pressure at which the

films were formed.

Several other oxides were investigated in our literature

search, none of which appears promising for device applications.

Tanaka 4 7 gives curves for several low-index, high-absorbance

oxides, which are listed in Table 12. The best of these is MnO,

which has the rocksalt structure. The high absorbance of one of

these compounds, Re304, was also studied by Schlegal et al. 48 ,49

High absorbance was also studied for Co impurities in A1 20 3 by

Niklasson and Grangvist. 5 0

The tetragonol materials, DyVO 4 and DyAsO 4 are questionable

because their refractive indices are low and very similar. 5 1 The

indices for DyVO 4 are 2.02 and 2.25; for DyAsO 4 they are 1.84 and

l. 6. Feldman et al. reported on the Faraday rotation exhibited

by Bi 2 GeO 2 0 , Bi 1 2 SiO2 0 , Bi 1 2 TiO2 0 , ZnO, Bi2 03, and Ga203 .5
2

These materials would be useful in certain cases due to their .

magneto-optic properties. The dielectric constants of Bil2SiO20

were investigated by Reza et al. 5 3 Thin films of Bi20 3 contain a

high density of voids but the refractive index of about 2.55 is

not sensitive to variations in stoichiometry. 54

The remainder of our literature search pertained to

materials commonly used in the glassy state. Hing investigated

losses in sintered alumina.5 5 He found that both Mg and Ca,
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TABLE 11

CUBIC FLUORITE-STRUCTURE OXIDES

Compound a n

ZrO2  5.07 1.72 - 2.0

HfO 2  5.115 4.0

Tb02  5.220

CmO2  5.372
AMO2  5.376

PuO 2  5.3960m
CeO 2  5.4110

U02  5.4682
PrO2  5.4694

P30 2  5.505

Th02  5.5997
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TABLE 12

HIGH-ABSORBANCE OXIDES

Compound n k

MnO 2.2 small

Mn 3 0 1  2. 4 0.2 9

ZnO 2.0 0.2

TiO2 2.7 0.3

E'e2 03  2.R 0.4

Mn2 0 2.7 0.5

Cu 2 0 2.7 0.5

CuO 2.4 0. 5

0eO 2.2 0.5

v05  2.1 0.5

V2 5
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which are often used to control sintering, segregated to the

grain boundaries. High absorption occurs in sintered alumina due

to residual porosity, grain-boundary contamination, and second-

phase scattering. Rest results were obtained using MgF as a

dopant. The effect of stoichiometry on a common companion of

alumina in glasses, SiO 2, was reported by Zuther, et al. who

studied the glass system Ga 203-GeO 2-'v1 O5.56 The refractive

indices of the monoclinic materials PbGeO 3 and PbSiO 3 were

measured by Sugi et al, 5 7 and are given in Table 13. These ani-

sotropic materials have similar refractive indices with high

dispersion. The refractive indices of oxide films on Ge and GPAs

are reported respectively by Nazarenko and Rastrenenko 58 and Umeno,

et al. 59 Finally, Ovcharenko and Yakhkind looked at several oxide

additives in tellurite glasses. 6 0 Their results are presented in

Table 14, which gives an extrapolation of the effective indices

of these additives to a 100% concentration. The refractive index

of TeO 2-BaO is 2.0976, and that of TeO 2-WO 3 is 2.1939. We take

the coexistence of oxides and tellurides as a transition to our

next paragraph, the chalcogenides.

7.4 Chalco nides

The ri/Vt compounds are a well understood and well developed

class of materials in which we make the transition from oxides to ."

chalcogenides. This is because ZnO and BeO have the wurtzite

structure, although their disparate respective lattice constants

of 3.25 and 2.69 angstroms make them unattractive candidates for

a solute system, and because the rocksalt structure contains both

oxides and chalcogenides. The wurtzite compounds are presented

in Table 15, and the rocksalt structured chalcogenides are given

in Table 16. Copper halides are also listed in Table 15. None

of the wurtzite systems appears attractive for low-defect solid

solutions, due to the incompatibility of their lattice parameters.

The same comment applies to the rocksalt structure chalcogenides.
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TABLE 13

PbGeO 3 and PbSiO03

PbC~e0 3  PbS i0 3

a 11.57

b 7.32

c 12.62

*2.0337 1.947

* 2.0411 1.961
fy

n. 2.0506 1.968

ed

*Taken at 579.1 nm. These materials have high dispersion.
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TABLE 14

OXIDES IN TELLEJRITE GLASSES .-

Add it ive n

TeO 2 -BaO TeO2 Wo 3  %*-

La 2O 3  1.63 1.73

Gd 2 O3  1.62 1.62

y2o3  1.56

Clio 1.57 1.86

ScO3 1.48 1.31

ZnO 1.61 1.63

Ga 2 03  1.48

A 0O 1.82 1.82
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TAB3LE 15

WURTZITE STRUCTURE

Compound a c W

Hal ides W

Cu H 2 .8 q3 4.614
CuCI1 3. 91 6.42

cu r4.06 6.66 4.4
Cur 4 .31 7.09
Ag 1 4. 580 7.494

')x 'e

ReO 2.698 4. 380 3.0

381 574
ZnO 3.250 5. 207 3.7 407 583

Cha icogen ides

znS 3.811 6.234
MnS 3.976 6. 432
ZrISe 3.98 6.53 5.9
MinTe 4,087 6.701
' nSe 4. 12 6. 72

Cos 4. 135 6.749 5.6 228 305
235

ZnTe 4. 27 6.99
C JSe 4. 30 7.02 6. 2 171 214
>lgTe 4.52 7. 33



TABLE 16

ROCKSALT STRUCTURE CHALCOGENIDES

Cornpouri E:E

MnS 5.22
CdS 5.516 5.30 10
CaS 5.689 6.67
PbS 5.9436 17.2 205

SuSe 6.020 22.9

PbSe 6. 124 280

SnTe 6.313 45.0

PbTe 6.454 32.8
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Another reason for passing over these materials is that ZnS,

Zns-Se, CdS, MnS, and MnSe can assume both the wurtzite and

zincblende structures. CdS and MnS can have the rocksalt struc-

ture as well. Furthermore, many II/VI materials do not resist

rIoisture 4e1i1.

Among the zincblende structure chalcogenides, HgxCdl_xTe

3p)ears to be the most likely candidate system, as can be seen

frDm Table 17. This system is especially attractive due to the

high and very different dielectric constants for HgTe and CdTe

respectively of 14.0 and 7.3. In fact, HgxCdl-xTe is known to

Ftr-n a continuous solution as a function of x. The x value must .

be kept above 0.15 to maintain a bandgap. The reflection

spectrum of H9. 7 5Cd. 2 5Te was taken by Kavalyauskas et al. 6 1

These authors obtained a dielectric constant of 12 for this solu-

tion. The refractive index of ZnS as a function of temperature

is given by Thompson et al. 6 2 Solutions of cubic CdSe,-.

Cd IxM nSe, and ZnS Se lx were investigated respectively by

Kainthla et al. 6 3 Antoszewski and Pecold, 64 and by Mach

e 11.65 Klassen and Ossipyan looked at the effect of disloca-

ti,)ns on CIS and CdSe. They found that the inhomogeneities

caused by dislocations caused focusing and channeling of light

piss ,ng through these materials. 6 6

Many transition metal/dichalcogenide compounds take the

pyrite structure (see Table 18). From Table 18 we see that

P xo% l-x solutions with either S, Se, or Te should make excellent

lattice matches. infrared measurements on several pyrites were

reported by Anastassakis and Perry. 67 Verble and Humphrey 68

'e3sured the infrared and Raman spectra of MnS 2 , and Ushioda

reported on Raman measurements on FeS 2 
6 9

One reason why the chalcogenides can be interesting is that

sulfur and selenium have similar crystal radii, of 1.84 and l.98

angstroms respectively, so that several solutions of SxSelx are

100
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TABLE 17

ZINCBLENDE OR SPHALERITE STRUCTURE CHALCOGENIDES

Compound a E.c WT w

BeS 4.85..
BeSe 5.07

ZnS 5.409 5.14 8.0 282 352
BeTe 5.54
MnS 5.600
ZnSe 5.668 5.90 8.3-9.1 207 246

MnSe 5.82
CdS 5.818 5.63 3
HgS 5.85 30.6

HgSe 6.084 25.6
ZnTe 6.089 7.28 10 178 206
CdSe 6.16 6.38

HgTe 6.429 14.0
CdTe 6.480 7.3 140 171

CuCi 5.406 3.6 7. 3 155 198
CuBr 5.690 4.4
Cur 6.043 5.2
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TABLE 18_

PYRITE STRUCTURE CHALCOGENIDES

Compound a c

FeS 2  5.407 21.3

CoS2  5.52 -.

RhS2  5.574

RsS 2 560

Co.e2  5.59

Osse 5.908

NiSe2 596

RhSe2  5.992160

MnSe2  6.93360-61

RuSe2  6.360

OMSe 2  6.361 6.07-6.1

IRTe2 ~ 6.411

RhTe 2  6.441
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known. In addition, some chalcogenides have large dielectric

constants. However, chalcogenides tend to have narrow bandgaps,

and are best suited for use in the infrared. Like the halides,

many chalcogenides form layered compounds with transition

metals. 70 These materials are discussed at length in Wieting and

Schluter. 7 1 The materials are most commonly grown by halogen .

vapor transport. 7 2 Often it is possible to grow large single

crystili, one exception being WS 2. Many of these layered com-

pounds are metals, but several are semiconductors. One of the

better known layered structures occurs for GaS and GaSe. Data on

these compounds are given in Table 19, where N refers to the

number of layers withii , ci.i cell. We see that GaS and GaSe do

not have either commensurate lattice parameters or particularly

interesting refractive indices. GaSe is an electro-optic

material; its electro-optic properties have been measured by

Sokolov and Subashiev. 7 3 The temperature dependence of the

refractive index of GaSe was investigated by Antonioli, et al. 7 4

The dispersion in GaSe is very high, with a refractive index that

varies from about 2.73 at 0.5 eV to 3.10 at 2.5 eV.7 4  -

Reflectivity measurements on GaSxSel-x crystals are presented in

Reference 75. Other optical measurements on GaSe are given in

References 76-80.

The most common layered structure formed by the transition

metal dichalcogenides is the CdI 2 structure shown in Figure 7.1a.

Many of these compounds are metal;3, iut except for SnSe 2, the

materials of Table 20 are semiconductors. We see from Table 20

that solutions of Hf/Sn/Zr in either sulfur or selenium are

possibilities for high-index devices with a potential for modula-

tion of over 30%. The sulphides are particularly attractive,

since they have wider bandgaps, a much closer (1%) match in lat-

tice constants, and do not contain any metals. Infrared reflec- N

tance measurement on many of these compounds were made by

Lucovsky et al. 8 1 Optical and U.V. measurements on SnSe 2 an'i
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TAB3LE 19

GaS STRUCTURE

Compound .3CN n

GaS 3.58:, 15.50 4 3.0

GaSe 3. 746 23.910 6 2.7

InSe 4.05 .16.93 4
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TABLE 20

Cd12 STRUCTURE -CHALCOGENIDES

Compound a c

Hf23.635 5.837 6.20
HfS2  3.639 5.868 9.5

ZrS 2  3.662 5.813 9.23

SnSSe 3.716 6.050

Hf Se 2  3.748 6. 159 8.05
Zre3.771 6.138-.149

SnSe 2  3.811 6.137 11
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SnS 2 were made by Bertrand et al. 8 2  Other papers on the

optical properties of SnS 2 and SnSe 2 are given in references 83

and 84. Isomaki and Boehm have made calculations on the

dielectric properties of ZrS 2 .8
5

The best known transition metal dichalcogenide, MoS 2 ,

belongs to the octehedrally coordinated family listed in Table

21, and depicted in Figure 7.1b. These materials have large

dielectric constants (7-24), albeit narrow bandgaps. As in the

case of the IT-CdI 2 materials, we find that a match of lattice

constants separates the MoxWl.x solutions into sulphides and

selenides. Of these, the sulphides are harder to grow.

Beal and Liang have made reflectivity measurements on WSe 2

and WS 2.
3 6 The optical properties of MoSe 2, which is relatively

easy to grow, were measured by Evans and Hazelwood. 8 7 Other

relevant papers are references 88 and 89. We note that many

transition metal trichalcogenides also take layered structures.

Zwick, et al. made Raman measurements on ZrS 3, ZrSe 3, ZrTe 3 , and

HfSe 3.
9 0 The infrared spectrum of HfS 3 was measured by Jandl

and Deslandes. 9 1

The system Bi 2Tel_xSe x also has a layered structure. It has

a very high dielectric constant (20-40) in the region between 2

and 10 Um, where it has an extinction coefficient of less than

one wm. 9 2 Orpiment, Hs2S3 , and its companion, As2Se 3, may

crystallize in a layered form, or can form glasses. Most work on

these materials has been done on the glass phase. These glasses

have good mechanical strength and chemical stability. However,

their range of refractive indices is small (n varies from 2.4 to

2.7), and their ability to form both a glass and a crystalline

phase suggests that scattering from defects may be a problem.

Butterfield 9 3 started the optical properties of 40 thin films

of these glasses. He attributed the dominant scattering mechan-

ism to void and oxygen impurities. Kanchiev and Kokorina concur
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TABLE 21 >

MOLYBDENITE STRUCTURE

Compound a c cm,

Mo 2 3.16 12.30 10 (2. 2pn)

WS2  3.15 12.36 7-8

Mo~e2 3.29 12.93 24 .:;

W~ 2 3.29 12.97 7.3

W. e2

JAM,-
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that oxygen impurities are a serious problem, as is water. 9 4

They suggest distillation as a means of removing these impuri-

ties. Young 9 5 ,9 6 finds that the absorption and reflectivity of

As 2S3 films depend on surface preparation, especially the finish

and the temperature at which the films were deposited. Other

papers on the optical properties of these glasses are given in

references 97-107. GeS 2 can also take both a glassy and a

crystalline form, and is sometimes used to form glasses and

As 2S3. Raman studies on GeS 2 have been made by Nemanich. I0 7 , 108

The single sulphides and selenides of Ge and Sn have an

orthorhombic structure (Table 22). These materials do not appear

to be well suited for continuously modulated optical devices.

Their optical properties are reported in references 109-116.

Miscellaneous references on chalcogenide compounds are given in

references 117-121.

Our remaining structure for chalcogenide compounds is the

chalcopyrite structure. This structure is shared by some arsenic

compounds and thus forms a bridge with the Group V materials.

The chalcopyrites, listed in Table 23, are birefringent and

difficult to grow in large crystals. From Table 23 we see that

there are four closely matched systems, all of which contain

either Cu or Ag, and most of which contain either Al or Ga. Most

of these materials are selenides. Of the four systems,

CuAl×GalxS2 , CuAlxGalxSe 2 , have very closely matched lattice

parameters. The In(CuSe 2 )x(AgS 2 )l x and Al(AgSe 2 )X(CuTe2 )1 x

systems are likely to form localized compounds such as InCuS 2

or AlCuSe 2 , which would have dissimilar lattice parameters. The

Raman and infrared spectra of AgGaS 2 was taken by Holah et

al. 1 2 2 AgGaS 2 has a direct band gap of 2.75 eV, and a large

nonlinear optical coefficient. 12 3 Many chalcopyrites also take

the zinc-blend structure. The (CuInSe2 )l x - (ZZnSe)x system was

studied by Gan et al., in this context. 1 24 The reflectivity of

a number of chalcopyrites was measured by Rife et al. 12 5
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TABLE 22

GeSe STRUCTURE

Compound a b c

GeSe 4.40 11.82 3.85 .-

SnS 4.33 11.18 3.98

GeS 4.30 10.44 3.65

SnSe 4.46 11.57 4.19

PbSnS2  4.23 11.42 4.09
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TABLE 23

CHALCOPYRITES

COMPOUND a

CuAIlb 2  5.312 10.42 9

CuGaS2  5. 349 10.47

Cu I r'S2  5.517 11.06

CuT1S2  5.580 11. 17

CuAlSe2  5.606 10.90 a
CuGaSe2  5.607 10.99

ZnSiAs2  5.608 10.89

AgFeS2  5.66 10. 30

ZnGeAs2  5.67o 11.153

AgA.1S 2  5.695 10.26

AgGaS,) 5.743 10.26

Cut rSe25.7115

CuT1Se 2  5.832 11.63

CdGeAs2  9.942 11.224

AgA1Se 2  5.956 10.75
CuAITe2  5.964 11.78
AgGaSe 2  5.973 10.88

CuGaTe2  5.994 11.91

AgtnSe2  6.090 11.67

CdSnAs2  6.092 11.-922

CutnTe2  6. 167 12. 34

AgGaTe2  6. 288 11.94

Ag'InTe 2  6.406 12. 56
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7.5 Group V Compounds

The group V materials have strongly covalent bonds, and in

general exhibit narrow bandgaps. Consequently they are of

interest primarily for infrared devices. The nitrogen compounds

tend to have bond lengths that are not well matched to those of

P, As, or Sb, so we will concentrate our attention on the latter

chemicals, and defer a discussion of nitrogen compounds to the

end of this paragraph.

By far the most well developed and most commonly used group .-

V materials are the III-V compounds with the zincblende

structure. Simply by virtue of current materials processing

capability, these compounds deserve attention, and are listed in

Table 24, in which are included the closely related materials Si

and Ge. These materials do suffer from generally narrow

bandgaps and low melting temperatures. However, they can be

grown on a large scale with a very low level-of defects. From

Table 24 we see that an AlxGa._x solution with either P, As, or

Sb will give a good lattice match, albeit with a variation in

dielectic constant of only about 20%. Continuous modulation of

these materials should reduce the bandbending associated with

interfaces. 1 26  It thus seems that these materials are attractive

for narrow-band ignition filters, provided that input power

levels are not too high. References 127-130 concern the optical

properties of some of these materials.

Our final group of materials are the nitrides with the ZnO

structure (see Table 25). We expect these nitrides to have wider

bandagaps and higher melting points than the zincblende compounds

of Table 24. It appears that the GaxAll_xN and NbxTal_xN systems

are good candidates for optical devices. 2
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TABLE 24

III/V COMPOUNDS -ZINCBLENDE STRUCTURE

CMONDa n E s
.6

sic 4. 348 6.7 10.2 793
Rp4.538 10.2 p
Si5.4307 3.5 11.7 520

GaP 5.4505 3.46 2.94 8.5 10.18 366
AIP 5.451 7.6 440

AIA3; 5.62 9.0 361
a aAs 5.6537 10.9 13.13 269
Ge 5.6574 4.016 16 15.8 309

nlP 5.8687 3.44 3.08 9.6 12. 37 304

InAs 6.036 4.17 3.46 12.3 14.6 219

GaSb 6.118 3.824 14.4 15.7 230
A IS ~ 6. 1347 4. 24 10.2 11.2 319

nS6.479 15.6 17.S8 180
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TAB3LE 25

ZnO STRUCTURE NITRIDES

COMPOUND a C e WT

A 11 3.111 4.978 4.8 622
GaN 3.180 5.166 5.8 . *

InN 3. 533 5.693

NbN 3.017 5.58.0
TaN 3.05 4.94
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.7.

3. CONCLUSION

We now present the conclusions resulting from our literature

survey and preliminary analysis. Although he has not definiti-

vely proved all of these conclusions, the author believes that ."'"'-:,-

they are valid over sufficiently general conditions to warrant

their entry in this report. We assert that:

* Stop and pass bands will be formed whenever the suscep- -

tibility is periodically modulated. In fact a series of such

bands will occur as a function of the wave frequency. The band

structure will become more sharply defined as the number of

repeat regions, or unit cells, increases, and as the medium '

approaches absolute periodicity. It is likely that the sharpness -

of the band edges will be enhanced if the imaginary part of the

material susceptance is minimized.

* The centers of successive stop bands occur at wavelengths

for which the optical depth of the medium taken over a unit cell

distance is an integral number of half wavelengths, i.e., the

phase angle is equal to n, or

d
k f dx n(x) = t . (8.1)

0

Thus the location of the gaps, or stop bands is determined pri-

marily by the dimension of the unit cell, d, and the mean value

of the refractive index, n(x), rather than the shape of the modu-

lation profile.

* The width of the band gaps, or stop bands increases as the

relative modulation in the refractive index, An/-, increases.

For small modulations, in most cases the widths of stop bands of

a given order are roughly proportional to components of the

Fourier transform of the modulation profile of similar order.
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* The degree of atte-nuation of 3 wave with a frequency within

a stop band increases toward the middle of the hand.* The amiount

of attenuation is proportional to An/n. If the number of repeat

units (unit cells) in the fi Lter is sufficiently large, such a

wave will not propagate through the filter at all, it will be

totally stopped. The attenuation of the wave is not due to

absorption, it is due to reflection, i.e., the stop bands

correspond to reflection bands.

0 Complex modulation profiles in the medium susceptance will

lead to "band splitting"--the formation of niew stop bands within

what would otherwise he pass bands. Consequently several stop

bands can be located at arbitrary frequencies within say, one

octave of the first stop band by appropriate design of the modu-

lation profile. The locations and widths of the various stop

bands will be related to the filter parameters in the same manner

as for a single stop band. If it is desired to locate stop bands

at arbitrary intervals over a multioctave region, then it will

probably be necessary to put up with additional "ghost" stop bands.

* As n increases, the acceptance angle for the filter will

also increase.

0 unless performance is desired over many octaves, there is no

apparent reason to favor one type of unit length modulation pro-

file (e.g., a step function as a sinusoidal, parabolic, or

Gaussian profile) over another. Details of the modulation pro-

file only become significant in the upper level stop, or reflec-

tion bands. There may be reasons based on materials for choosing

a given type of modulation profile. For example, it may be that

impurities will aggregate at discontinuities. However, our ana-

lysis in Paragraph 2.2 suggests that even if such an aggregation

were to occur, it would not affect the amount of absorption in most

cases. Some effect might be discernable at stop bands.

in addition, we have made a brief preliminary survey of

possible materials for graded-index optical devices. In our
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analysis we assumed that a minimization of absorption was para-

mount, and accordingly sought systems that offered a hope of

achieving a low density of defects and an infrared spectrum rela-

tively free of absorption bands. This implied a choice of opti-

cal materials with simple molecular formulas, materials that

crystallize with identical structures and closely matched lattice

parameters, and materials that are known to crystallize in only

one form. In particular, we noted that many potential candidate

materials are layered compounds. it may be possible to use

layered materials with dissimilar chemical formulas in adjacent

layers without introducing serious problems with interface

states. -rn

8.1 Comments

The author is confident that an analytic description of a

filter behavior similar to that discussed in Sections 3-6 can be

extended to complex susceptibilities and three-dimensional

systems. Similar problems have been treated in three dimensions

in band theory, lattice dynamics, and the description of

microwave components. Step function modulations are the easiest

to analyze because the solutions are in terms of sines and

cosines, which are familiar, and can often be manipulated into

compact expressions. The analysis of a Rugate filter is much

less tractable. However, in many cases of interest, such as

sinusoidal modulation, closed form solutions should be

obtainable. Indeed, solutions to the Mathieu problem have been

known for over half a century.

Commonly, continuously modulated filters are approximated in

manufacture by stacking together a large number of very thin

layers, with flat index profiles across each layer and sharp r

discontinuities between layers. Our analysis suggests that the

merit of this procedure is at best moot. This practice will

indeed jive a reasonable approximation of an arbitrary index pro-
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fle over a limited (one or two octave) frequency range.

However, it introduces a very large number of discontinuities.

If these discontinuities do, in fact, result in deterioration of L
he material properties, then these disc-)ntinuities are sel 

*efeating. They will also affect the structire of high-order "

binds. Therefore if the higher-order band structure is impor-

tant, the use of thin layers will interfere with these upper-

level bands.

We note that both the width and the degree of attenuation

or reflection in the stop or reflection bands scales as .n,i.

This creates difficulties if notch filters are desired. It

appears that the primary -way out of this dilemma is to build z

filter with many repeat distances, i.e., a very long filter. It

may also be possible to achieve some design freedom by

prescribing profiles that have narrow potential wells (regions of t
large susceptibility) separated by relatively wide distances.

8.2 Imolications and Suggestions

On the basis of this interim survey the author concludes

that the choice of optimum filter materials and manufacturing

should be dominated by materials and manufacturing questions

ratner than by filter design criteria. The primary concern

should be to minimize intrinsic losses. This can be achieved by

selecting materials whose imaginary component of the refractive

index, ni, is small compared to the real component, nr, and by

minimizing local inhomogeneities which will add to losses, as

described in Paragraph 2.2. The second criteria should be to

select a material that is immune to intense levels of signal

energy. This implies a low variation of n(x) with temperature,

and a high melting or phase transition temperature. Comments on

nonlinear susceptibilities are beyond the svope of this report.

In general, it will be desirable to adjust the widths of the

stop or reflection bands and to create multiple stop bands at
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arnitrary fr-equencies. This will require tailor-made refraction

indices, which are achieved by appropriate solid solutions. If -

inhomogeneities in the resulting material are to be minimized,

the constitjents of the solution should be as compatible

(mutually soluble) as possible. This suggests similar struc-

tures, chemical compositions, and bond lengths. ". .

In summary, we believe that optimum materials should have

the following properties:

0 n i << nr

* Amenability to manufacture with a low concentration of

defects

* dn/dT 0

* A high phase transition temperature

* Good solubility with other materials possessing a simi-

lar structure but as different a refractive index as

possible.

This interim report is by its very nature incomplete. If we

are to obtain a reasonably complete analytic picture of maximum

filter design, several steps should be undertaken. We need to

make analytic calculations of the dependence of the imaginary -

part of the wavenumber, ki, and the reflection bandwidth, Aw on

the relative modulation depth, An/T. These calculations should -.-

be made for both the Kronig-Penney and the Mathieu problems, and the

respective results should be compared. The analytic calculations

should be augmented by numerical calculations, and should be

extended to include multiply periodic filters. We should also

make numerical comparisons between the Kronig-Penney and the Mathieu W

contours in regard to their higher-order band structure and the

side lobes in their reflection bands.
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We shouli extend our calculation to include complex sus,:-p-

• tibilities, including both analytic and numerical work.

Formulations should be given for additional profiles, e.g., as

sawtor'th and parabolic profiles. In particular, we should

investite the application of a Kramers-Kronig analysis to a

Bragg filter. The Kramers-Kronig relation is based solely upon

causality. Therefore it is reasonable to assume that it will
.3[:, to the filters in question. However, since we get stop

bands even with ideal materials that have purely real suscep-

tibilities, the applicability of a Kramers-Kronig analysis is not

immediately obvious. Assuming that it does apply, it would be -

very useful both in filter design and in reducing data on filters.

Finally, our analytic formulations should be extended to

three dimensions, particularly for the case of the Mathieu problem.

Such calculations can most readily be made in Cartesian coor-

dinates, but calculations in a cylindrical coordinate system

should also be attempted. If time permits, an analytic treatment

of the effect of terminations and interfaces should also be made.
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APPENDIX A -

MATHEMATICAL UNDERPINNINGS OF WAVE PROPAGATION IN PERIODIC MEDIA

in this appendix we derive some of the equations which form

.4 .~. .

a basis for the discussion of Section 3. The fundamental pro-

perty that facilitates the description of this problem is that

the waves obey a second-order equation of motion,

+ f (X) ~, 0 (A.1)

in which no first derivative term appears. The second property

is that the response of the media to the wave is periodic along

the path of the wave. No other properties of the system need to

be involved in our discussion. Consequently our remarks apply to

many fields other than optics, including acoustics, lattice

vibrations, transmission line theory, waveguide theory, and the

band theory of solids. In Section 3 we use

2-2 2 2
f(x) = k n (x) = k E(X) k (X) .(A.2)

0 0

A.1 Form for Transfer Matrix Elements

A second-order differential equation will have two indepen-

dent solutions for a given set of parameters (e.g., k and )

Let these be land 2 Then, from Equation (A.1),

off f(x) *I2(A.3)

and

21 - f(x) * (A.4)

Subtracting (A.4) from (A.3) we have

0 0i - 0**' 0 .(A. 5)
1 2 21
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This is a key result, which as we see, stems from the form of

(A. 1). Now

x~ 0' l2 1) bdr " i' + 2 i ~2 i (A. 6)

4Consequently, we find

,f. dx '
- ( - ,(A7

or

10' - 020= constant . (A.8)

The quantity in the l.h.s. of (A.8) is known as the Wronskian for

(A.1). The critical point is that the Wronskian is independent of

the argument of 0 1 and 2, as long as they are taken at the same

point. Note that if we had an equation of the form

+ y(x)i' + f(x) , = 0 , (A.9)

we would obtain the result

--: 020 exp [-fy(x)dx] (A. 10)

We would need to use (A.10) instead of (A.8) in regard to

the full wave Equations (4.1) - (4.4).

We are now in a position to derive the expressions for the

matrix elements Equations (3.17) - (3.21). We begin with a

general solution to (A.1), which is a linear combination of the

" " independent solutions O1 and 02:

= c1 1 + c202 (A.l)

Differentiation of (A.11) yields

;c'.- + c . (A. 12)
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We may solve for cl and c2 in (A.11) and (A.12):

- 2 ct(*t 2 - lz (A.13)

D

0 - (A.14)

Ip'2 1ti~ 2 2 1

D

Since the c coefficients are the quotients of Wronskians of (A.1),

they are indeed constants, by (A.8). We may therefore use the

argument at x' to for c 1 and c2 in (A.11):

*(x) = cl(x'b) 1 (x) + c2 (x')4 2 (x) (A.15) - -i

Substituting from (A.13) and (A.14) in (A.15), we find

x D X [, x ) x, x 2 ,(x), x )~ ( )-

+ [i'(x')Ol(x') - p(x')#(x')]# 2 (x) " (A.16)

We may rearrange the terms in (A.16) to obtain an expression for AMK

*(x) in terms of ( ') and t'(x'):

- '.
D P )p 2x)i~'

[0 (X4* (xI) - 0 (x)o2(x')] ' x )'" 'i'D 2 1 1-."-2

= b 1 P(x') + b 12 '(x'), Q.E.D. (A.17)

A similar argument will give the expressions for the matrix ele-

ments b2 1 and b2 2.
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A.2 Dispersion Relation

We now consider a different point of view, in which we

express p(x) in terms of its value at x', without regard to

'(x' ) We again use (A.11), and write

(X) = (XX') (()A.18).'

Using (A.13), and letting p(x') also be of the form (A.11), there

will be some matrix A with elements aij, such that "

( = all l(x') + a1 2 2 (x') (A.19)

and

(A.20)

,2(x) = a21,1(x') + a12 2(x') .A 2 )...-°

Equations (A.11) and (A.18)-(A.20) give us

) (Call + c2a21 ) 1 (x) + (cla 1 2 + c2a 2 2 ) *2 (x') --

X A Lc1 l (x') + c242 (x')] . (A.21)

From (A.21) we obtain the matrix eigenvalue equation

all a12
= 0 , (A.22)

a21  a2 2 -

or

2 a (1 + a 2 2 )X + (a1 1a 2 2 - a1 2 a 2 1) = 0 (A.23)

A

We next show that A 1. Note however, that since A = 1, we find

2 - (a 1 + a2 2 )X + 1 = 0 , (A.24)

or
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T [A] + X (A. 25) .~r

We now show that A = 1. We refer to the (constant) w

Wronskian D. Using (A.19) and (A.20) we write

D = 0 (x)o'x - *'x)Y x)
g1 246

orr

(aD *Pl+a0('][ (A.26)

There fore

(A.29)

The results we have derived have depended on the form (A.1)

for the wave equation, and in particular on the consequence (A.8).

However, the expression (A.18) is most useful when p is periodic

in x. This will be the case when f(x) is periodic, as we now

show. We may construct a function A(x) such that

Ox) = A(x) eikx (A.30)

Substituting (A.29) in (A.1) we find

A" + 2ikA' + [f(x) -k
2] A 0 .(A.31)

*If f(x) is periodic with period d, then from (A.31) A must

be also. it is often useful to rewrite (A.30) in another form. a

* We let

x -x' d ,(A.32)
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and obtain .i

=AW +- nd)exp [ikx' + iknd] (A.33)

=A (x' )exp riknd] (A. 34)

From (A.33) we see that%

A=eikd (A. 35)

inr (A.l18) Using (A.35) in (A.25), we have the dispersion rela-

t ion

*Tr[Al 2cos kd (A. 36)

If there is a first derivative in the wave equation, leading to

(A.10) instead of (A-8) we would find

exp [rx' r(x)] ,(A.37)

where

r
* =f dx y (x) (A.38)

0

Equations (A.1l)-CA.23) would otherwise remain unchanged.

Equation (A.24) would now become

X2 -(all + a2 2 )X + exp [r(x') - (x)] o (A.39)

dx

A thei third term in (A-39) becomes e(x)/E(x').

*!)JS. GPO: 646-O66*
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